Argonne scientists are first to grow graphene on silver

Mar 03, 2014 by Justin H.s. Breaux
Atomic carbon (black spheres) is evaporated at over 2,300 degrees Celcius and deposited on a silver platform where flakes of graphene form. Lighter-colored regions correspond to graphene growth and silver is depicted in the darker regions.

( —Silver, meet graphene. Super strong, super light, near totally transparent and one of the best conductors of electricity ever discovered, graphene is a one-atom-thick sheet of carbon atoms that owes its amazing properties to being two-dimensional.

Graphene, meet . Silver is a high-quality noble metal that corrodes very slowly in moist air and doesn't typically interact chemically with other substances. Graphene, meanwhile, is a sought-after platform for new physics and device applications.

"You have one material, silver, that's really good at confining light and another, , that's really good with efficiently moving electrons," said Northwestern University graduate student Brian Kiraly, who discovered the new process making the growth of graphene on silver possible.

Researchers at Department of Energy's Argonne National Laboratory, in collaboration with scientists at Northwestern Universit, are the first to grow graphene on silver, which until now posed a major challenge to many in the field. Part of the issue has to do with the properties of silver; the other involves the process by which graphene is grown.

Chemical vapor deposition is currently the industry standard for growing graphene. The technique allows hydrocarbons, like methane or ethylene, to decompose onto a hot platform in order to form that become graphene. However, this technique doesn't work with a silver platform.

"The traditional method of decomposing hydrocarbon onto a transition metal wasn't working," said Nathan Guisinger, a staff scientist at Argonne's Center for Nanoscale Materials. "The methane won't break down, it'll just hit the hot silver and bounce off and remain methane, so there's no carbon source to actually grow the graphene."

At this point, to figure out how to grow graphene on silver, the researchers needed to understand the atomic and molecular properties of the material. For instance, atomic carbon evaporates at extremely high temperatures—over 2,400 degrees Celsius—forcing the researchers to account for a number of different parameters to create a layer one atom thick.

Additionally, whereas graphene is conventionally grown at temperatures of 1,000 degrees C or above, the new Argonne-Northwestern technique grows it at a lower temperature of 750 degrees, giving researchers more options for working with the material. This method also slows down the process to determine the right growth rate and distribution for a single layer of carbon atoms landing on the silver.

A three-dimensional rendering of graphene showing continuous growth on a platform. Lighter colors correspond to slightly higher relative positions. Waves depict the bonds between carbon atoms in the honeycomb lattice.

The first step in growing the graphene layer was making sure the silver substrate was "atomically clean"—a hard standard to meet.

"It's very difficult to make an atomically clean platform," Guisinger said. "Almost all platforms exposed to air will get covered with a water layer and oxidize." To prevent this phenomenon from occurring, the researchers work in a specially designed ultra-high vacuum environment.

To initially clean the platform, Kiraly used a technique called "sputter annealing." This is where the platform used to grow the graphene is sprayed with ions that chew up the surface and rids it of any organic or inorganic material. The next step is to anneal the metal, a process "that heals it and allows for atomically clean and flat surfaces," said Kiraly.

After a series of examinations, the researchers discovered that they had successfully deposited a single layer of graphene on silver.

Encouraged by this result, the researchers hope to demonstrate how to layer graphene with other one-atom-thick materials, such as silicene, into stacked atomic layers to create hybrid materials.

Because of silver's excellent optical properties, Kiraly envisions this research having applications in detectors.

"Conventionally, you can make things with both optical and electronic components to them, as in opto-electronics devices," said Kiraly. "Anything like a photo-detector or a solar cell has some type of light interaction that corresponds with an electronic effect or vice versa."

There is increased interest in moving graphene from the lab to into lighter, more energy-efficient consumer devices. The University of Manchester in England, for example, will finish their National Graphene Institute next year to the tune of £61 million.

"With the discovery of how to make graphene, now there's a hunt for more two-dimensional materials. Once they're discovered, we want to know how to combine them," said Guisinger.

But for now, it is up to scientists like Guisinger and Kiraly to figure out how those atom-sized pieces fit together to create the next technological breakthroughs.

The work is outlined in a paper, "Solid-source growth and atomic-scale characterization of graphene on Ag(111)", published in the journal Nature Communications.

Explore further: How to make graphene superconducting

More information: "Solid-source growth and atomic-scale characterization of graphene on Ag(111)." Brian Kiraly, Erin V. Iski, Andrew J. Mannix, Brandon L. Fisher, Mark C. Hersam, Nathan P. Guisinger. Nature Communications 4, Article number: 2804 DOI: 10.1038/ncomms3804. Received 28 May 2013 Accepted 22 October 2013 Published 15 November 2013

add to favorites email to friend print save as pdf

Related Stories

Researchers grow graphene on silver

Nov 18, 2013

( —Graphene, a one-atom-thick carbon layer with extraordinary conductivity and strength, holds promise for a range of applications, but to realize its potential scientists must perfect techniques to tune its properties. ...

Graphene growth on silver

Jan 14, 2014

Users from Northwestern University, working with the Center for Nanoscale Materials EMMD Group at Argonne, have demonstrated the first growth of graphene on a silver substrate.

Researchers invent 'sideways' approach to 2-D hybrid

Jan 09, 2014

( —Researchers at the Department of Energy's Oak Ridge National Laboratory and the University of Tennessee, Knoxville have pioneered a new technique for forming a two-dimensional, single-atom sheet ...

How to make graphene superconducting

Feb 11, 2014

Whenever a new material is discovered, scientists are eager to find out whether or not it can be superconducting. This applies particularly to the wonder material graphene. Now, an international team around ...

The mechanism of caesium intercalation of graphene

Feb 21, 2014

Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene, can be manipulated by the inclusion of different atomic and ...

New study reveals communications potential of graphene

Feb 19, 2014

Providing secure wireless connections and improving the efficiency of communication devices could be another application for graphene, as demonstrated by scientists at Queen Mary University of London and ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 03, 2014
How large are the graphene flakes they've made?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.