Ancient Indonesian climate shift linked to glacial cycle

Mar 24, 2014

Using sediments from a remote lake, researchers from Brown University have assembled a 60,000-year record of rainfall in central Indonesia. The analysis reveals important new details about the climate history of a region that wields a substantial influence on the global climate as a whole.

The Indonesian archipelago sits in the Indo-Pacific Warm Pool, an expanse of ocean that supplies a sizable fraction of the in Earth's atmosphere and plays a role in propagating El Niño cycles. Despite the region's importance in the system, not much is known about its own , says James Russell, associate professor of geological sciences at Brown.

"We wanted to assess long-term variation in the region," Russell said, "not just to assess how global climate influences Indonesia, but to see how that feeds back into the ."

The data are published this week in the Proceedings of the National Academy of Sciences.

The study found that the region's normally wet, tropical climate was interrupted by a severe from around 33,000 years ago until about 16,000 years ago. That period coincides with peak of the last ice age, when glaciers covered vast swaths of the . Climate models had suggested that glacial ice could shift the track of tropical monsoons, causing an Indonesian dry period. But this is the first hard data to show that was indeed the case.

It's also likely, Russell and his colleagues say, that the drying in Indonesia created a feedback loop that amplified ice age cooling.

"A very large fraction of the Earth's water vapor comes from evaporation of the ocean around Indonesia, and water vapor is the Earth's most important greenhouse gas," Russell said. "As you start varying the hydrological cycle of Indonesia, you almost have to vary the Earth's water vapor concentration. If you reduce the water vapor content it should cool the climate globally. So the fact that we have this very strong drying in the tropics during glaciation would argue for a strong feedback of water vapor concentration to the global climate during glacial-interglacial cycles."

Surprisingly absent from the data, Russell says, is the influence of other processes known to drive climate elsewhere in the tropics. In particular, there was no sign of climate change in Indonesia associated with Earth's orbital precession, a wobble caused by Earth's axis tilt that generates differences in sunlight in a 21,000-year cycle.

"There's very little indication of the 21,000-year cycle that dominates much of the tropics," he said. "Instead we see this very big set of changes that appear linked to the amount of ice on earth."

To arrive at those conclusions, the researchers used sediment cores from Lake Towuti, an ancient lake on the island of Sulawesi in central Indonesia. By looking at how concentrations of chemical elements in the sediment change with depth, the researchers can develop a continuous record of how much poured into the lake. The rate of runoff is directly related to the rate of rainfall.

In this case, Russell and his colleagues looked at titanium, an element commonly used to gauge surface runoff. They found a marked dip in titanium levels in sediments dated to between 33,000 and 16,000 years ago—a strong indicator that surface runoff slowed during that period.

That finding was buttressed by another proxy of rainfall: carbon isotopes from plant leaf wax. Leaves are covered with a carbon-based wax that protects them from losing too much water to evaporation. Different plants have different carbon isotopes in their leaf wax. Tropical grasses, which are adapted for dryer climates, tend to have the C-13 isotope. Trees, which thrive in wetter environs, use the C-12 isotope. The ratio of those two isotopes in the is an indicator of the relative abundance of grass versus trees.

The cores showed an increase in abundance of grass in the same sediments that showed a decrease in surface runoff. Taken together, the results suggest a dry period strong enough to alter the region's vegetation that was closely correlated with the peak glaciation in the northern hemisphere.

The next step for Russell and his colleagues is to see if this pattern is repeated in multiple glacial cycles. Glacial periods run on cycles of about 100,000 years. Core samples from deeper in the Lake Towuti sediment will show whether this drying evident during the last also happened in previous ice ages. It's estimated that Lake Tuwuti sediments record up to 800,000 years of climate data, and Russell recently received funding to take deeper cores.

Ultimately, Russell hopes his work will help to predict how the region might be influenced by human-forced global warming.

"This provides the kind of fundamental data we need to understand how the climate of this region operates on long timescales," he said. "That can then anchor our understanding of how it might respond to global warming."

Explore further: UCLA study yields more accurate data on thousands of years of climate change

More information: "Glacial forcing of central Indonesian hydroclimate since 60,000 y B.P.," by James M. Russell et al. PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1402373111

add to favorites email to friend print save as pdf

Related Stories

Measuring the effect of water vapor on climate warming

Mar 18, 2014

Water vapor is a potent greenhouse gas. In the atmosphere, the concentration of water vapor increases with the temperature, setting up a powerful positive feedback loop. This water vapor feedback is the strongest known positive ...

Demise of last ice age encoded in tropical stalagmites

Dec 10, 2013

Hidden deep underground in Indonesian caves, the missing link in the demise of the last ice age has been uncovered in stalagmites, which have provided a 31,000 year-long record of Australasian monsoon activity.

Recommended for you

Methane is leaking from permafrost offshore Siberia

14 hours ago

Yamal Peninsula in Siberia has recently become world famous. Spectacular sinkholes, appeared as out of nowhere in the permafrost of the area, sparking the speculations of significant release of greenhouse ...

New discovery in Arctic is a very old clam

15 hours ago

The rapidly thawing Arctic Ocean may be a new frontier but some of the latest news from there concerns a clam that is believed to date back more than a million years.

Barren deserts can host complex ecosystems in their soils

15 hours ago

"Biological soil crusts" don't look like much. In fact, people often trample right over these dark, or green-tinted, sometimes raised patches in the desert soil. But these scruffy stretches can house delicate ...

Researchers on expedition to solve 'small island problem'

15 hours ago

Researchers from the Department of Electronic & Electrical Engineering are starting their new year with an expedition to the island of South Georgia to carry out research into improving weather forecasting. You can follow the team's progress on their blog. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

mememine69
1.8 / 5 (5) Mar 24, 2014
Wouldn't now be a good time for phys.org to officially renounce the CO2 blunder and exaggeration before history dooms us all to be witch burners?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.