Vanadium dioxide research opens door to new, multifunctional spintronic smart sensors

Feb 05, 2014 by Matt Shipman

Research from a team led by North Carolina State University is opening the door to smarter sensors by integrating the smart material vanadium dioxide onto a silicon chip and using lasers to make the material magnetic. The advance paves the way for multifunctional spintronic smart sensors for use in military applications and next-generation spintronic devices.

Vanadium dioxide is currently used to make . By integrating the material as a single crystal onto a silicon substrate, the researchers have made it possible to create infrared , in which the sensor and computational function are embedded on a single chip. This makes the sensor faster and more energy efficient, since it doesn't have to send data to another chip to be processed. Smart sensors are also lighter than conventional ones, since separate chips aren't necessary.

"For , sensor technology needs to be able to sense, manipulate, and respond to data quickly – and this work achieves that," says Dr. Jay Narayan, John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and senior author of a paper describing the work.

In addition, the researchers used high-power nanosecond-pulsed laser beams to modify the and make it magnetic. This will allow the creation of spintronic smart sensors that incorporate infrared sensors and magnetic sensors on a single chip. Spintronics refers to technologies used in solid-state devices that take advantage of the inherent spin in electrons and their related magnetic momentum. The potential advantages of spintronics include higher memory capacity, faster data transfer and more computational power on a computer chip.

Explore further: Researchers integrate single-crystal BFO onto a silicon chip, open door to smart devices

More information: The paper, "Diamagnetic to ferromagnetic switching in VO2 epitaxial thin films by nanosecond excimer laser treatment," is published online in Applied Physics Letters. scitation.aip.org/content/aip/… 25/10.1063/1.4857155

Abstract
VO2(010)/NiO(111) epitaxial heterostructures were integrated with Si(100) substrates using a cubic yttria-stabilized zirconia (c-YSZ) buffer. The epitaxial alignment across the interfaces was determined to be VO2(010)‖NiO(111)‖c-YSZ(001)‖Si(001) and VO2[100]‖NiO(110)‖c-YSZ(100)‖Si(100). The samples were subsequently treated by a single shot of a nanosecond KrF excimer laser. Pristine as-deposited film showed diamagnetic behavior, while laser annealed sample exhibited ferromagnetic behavior. The population of majority charge carriers (e−) and electrical conductivity increased by about two orders of magnitude following laser annealing. These observations are attributed to the introduction of oxygen vacancies into the VO2 thin films and the formation of V3+ defects.

Related Stories

Recommended for you

'Comb on a chip' powers new atomic clock design

5 hours ago

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Quantum leap in lasers brightens future for quantum computing

5 hours ago

Dartmouth scientists and their colleagues have devised a breakthrough laser that uses a single artificial atom to generate and emit particles of light. The laser may play a crucial role in the development of quantum computers, ...

Technique simplifies the creation of high-tech crystals

5 hours ago

Highly purified crystals that split light with uncanny precision are key parts of high-powered lenses, specialized optics and, potentially, computers that manipulate light instead of electricity. But producing ...

A new multi-bit 'spin' for MRAM storage

8 hours ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

User comments : 0