Tough life key to croc immunity

Feb 10, 2014 by Verity Leatherdale
Tough life key to croc immunity
PhD student Weerachai Jaratlerdsiri and Dr Jaime Gongora have researched the immune system of crocodiles.

( —The immune systems of crocodiles and alligators have remained relatively unchanged for centuries despite their worldwide distribution, as revealed for the first time by University of Sydney researchers. This new knowledge could assist in the conservation and breeding strategy of Australian freshwater and saltwater crocodiles.

Dr Jaime Gongora, research project leader from the University of Sydney's Faculty of Veterinary Science said "Alligators and crocodiles occupy an evolutionary mid-point between mammals and birds so they provide a unique link. Our research helps address fundamental questions about how evolution drives and maintains genetic diversity of the immune genes.

"The study looked at the diversity and evolutionary mechanisms of two primary gene classes of the (MHC), key components of the immune system. The study investigated 20 species of crocodilians including the two Australian crocodile species; freshwater and .

"This research helps to close a gap in our knowledge of immune gene evolution particularly since the crocodilian families (crocodiles and alligators) diverged from a common ancestor 90 million years ago."

The MHC is a group of genes that help the immune system identify microbes and parasites. They play an important role in disease resistance, as diverse genes allow animals to resist a wider range of diseases. The research published this week in the journals PLOS ONE and Immunogenetics shows that some of the genes involved in the fight against viruses, bacteria and parasites have remained the same across all crocodilian species while other immune genes seem to have diversified in crocodiles.

"The diverse environments occupied by many crocodilians, whether saltwater crocs in the Northern Territory or alligators in Florida, appear to have exposed crocodilians immune genes to a wide range of germs," Dr Gongora said.

Researchers found multiple instances of crocodilians losing and/or duplicating genes showing that their immune system is still responsive to evolutionary changes.

"We now have a genetic resource to understand the immune system in crocodilians, thanks to this research. It will enable genetic investigations of how these animals respond to local conditions including susceptibility to disease," said lead author of the article Weerachai Jaratlerdsiri, who recently completed his PhD at the University of Sydney.

"In an agricultural context, crocodiles are produced for their skins as part of a very successful sustainable-use conservation strategy. Part of this strategy is to place an economic value on the wild population, in this case the crocodile eggs, which are collected and artificially incubated before rearing the offspring in captivity. However, since these animals are not domesticated, no selection against bugs has occurred. Thus, understanding the genetic regulation of disease susceptibility will provide crocodile producers with selection tools and lessen the reliance on vaccinations and antibiotics" said Dr Sally Isberg, honorary associate at the University of Sydney and Managing Director of the Centre for Crocodile Research which consults to the Australian crocodile industry.

"The innovative and fundamental knowledge generated from this research serves as the base for further research into the immunological fitness of wild and farmed populations especially to explain how they maintain the health of their to deal with parasites and microbes."

"We suggest that throughout crocodilian evolution, immune gene diversity responded to disease-causing organisms in the environment. This might provide further insights into by explaining how immune genes evolve in other vertebrates, in particular reptiles" Mr Jaratlerdsiri said.

Explore further: Immune system study could help conserve endangered species

More information: Jaratlerdsiri W, Isberg SR, Higgins DP, Miles LG, Gongora J (2014) "Selection and Trans-Species Polymorphism of Major Histocompatibility Complex Class II Genes in the Order Crocodylia." PLoS ONE 9(2): e87534. DOI: 10.1371/journal.pone.0087534

Weerachai Jaratlerdsiri, Sally R. Isberg, Damien P. Higgins, Simon Y. W. Ho, Jan Salomonsen, Karsten Skjodt, Lee G. Miles, Jaime Gongora "Evolution of MHC class I in the Order Crocodylia." Immunogenetics January 2014, Volume 66, Issue 1, pp 53-65 DOI: 10.1007/s00251-013-0746-1.

Related Stories

Crocodilians bite with the best

Mar 14, 2012

Crocodiles can kill with the strongest bite force measured for any living animal, according to a report published Mar. 14 in the open access journal PLoS ONE.

Mapping the crocodile genome

Jul 28, 2009

The first ever genetic linkage map for a non-avian member of the Class Reptilia has been developed. Researchers writing in the open access journal BMC Genomics have constructed a first-generation genetic linkage map for th ...

Recommended for you

Orchid named after UC Riverside researcher

12 hours ago

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

14 hours ago

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

14 hours ago

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Biologists help solve fungi mysteries

( —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

( —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...