Team builds nonflammable lithium ion battery

Feb 10, 2014

In studying a material that prevents marine life from sticking to the bottom of ships, researchers led by chemist Joseph DeSimone at the University of North Carolina at Chapel Hill have identified a surprising replacement for the only inherently flammable component of today's lithium-ion batteries: the electrolyte.

The work, to be published in the Feb. 10 issue of the Proceedings of the National Academy of Sciences, paves the way for developing a new generation battery that doesn't spontaneously combust at high temperatures. The discovery also has the potential to renew consumer confidence in a technology that has attracted significant concern—namely, after recent lithium battery fires in Boeing 787 Dreamliners and Tesla Model S vehicles.

"There is a big demand for these batteries and a huge demand to make them safer," said DeSimone, Chancellor's Eminent Professor of Chemistry in UNC's College of Arts and Sciences and the William R. Kenan Jr. Distinguished Professor of Chemical Engineering at N.C. State University and of Chemistry at UNC. "Researchers have been looking to replace this for years, but nobody had ever thought to use this material called perfluoropolyether, or PFPE, as the main electrolyte material in before."

Today's lithium-ion batteries power everything from our mobile devices—phones, tablets and laptops—to jumbo airliners and plug-in electric cars, but an inherently flammable liquid is used as the electrolyte. Lithium ions shuttle through this liquid from one electrode to the other when the battery is being charged. But when the batteries are overcharged, the electrolyte can catch fire and the batteries can spontaneously combust.

Spontaneous combustion is not so much a problem with mobile devices, which are small and replaced frequently, explains Dominica Wong, a graduate student in DeSimone's lab who spearheaded the project. But when the batteries are scaled up for use in electric cars or planes, their flammability problems are magnified and the consequences can be catastrophic.

In the past, researchers have identified alternative nonflammable electrolytes for use in lithium-ion batteries, but these alternatives compromised the properties of the lithium ions. "In addition to being nonflammable, PFPE exhibits very interesting properties such as its ion transport," said Wong. "That makes this electrolyte stand apart from previous discoveries."

The discovery began when DeSimone realized that PFPE, a material that he had been researching for the Office of Naval Research to prevent marine life from sticking to the bottom of ships, had a similar chemical structure to a polymeric electrolyte commonly studied for lithium-ion batteries. PFPE is nothing new; it's a polymer that has long been used as a heavy-duty lubricant to keep gears in industrial machinery running smoothly.

"When we discovered that we could dissolve lithium salt in this polymer, that's when we decided to roll with it," said Wong. "Most polymers don't mix with salts, but this one did—and it was nonflammable. It was an unexpected result."

Collaborator Nitash Balsara, faculty senior scientist at Lawrence Berkeley National Laboratory and professor of chemical and biomolecular engineering at the University of California, Berkeley, and his team were then tasked with studying lithium-ion transport within the electrolyte and found compatible electrodes to assembly a battery.

Going forward, the team will focus on optimizing electrolyte conductivity and improving battery cycling characteristics, which are necessary before the new material can be scaled up for use in commercial batteries, explains Wong. If successful, a commercial can also be used in extremely cold environments, such as for aerospace and deep sea naval operations.

"This is a really good starting point for us to go in a lot of different directions and bridge the gap between academic research and industrial scale-up," said Wong. "But the best part was the interdisciplinary collaboration—having the opportunity to work on scientific problems with researchers with different backgrounds and expertise."

Explore further: Gummy material addresses safety concerns of lithium ion batteries

More information: Nonflammable perfluoropolyether-based electrolytes for lithium batteries, by Dominica H.C. Wong et al. www.pnas.org/cgi/doi/10.1073/pnas.1314615111

Related Stories

Battery development may extend range of electric cars

Jan 09, 2014

It's known that electric vehicles could travel longer distances before needing to charge and more renewable energy could be saved for a rainy day if lithium-sulfur batteries can just overcome a few technical ...

Study paves way for larger, safer lithium ion batteries

Jan 23, 2013

(Phys.org)—Looking toward improved batteries for charging electric cars and storing energy from renewable but intermittent solar and wind, scientists at Oak Ridge National Laboratory have developed the ...

Two takes on lithium-ion batteries

Apr 16, 2013

Lithium-ion batteries have transformed our lives. Without them, we wouldn't have laptop computers or cell phones—at least, not the long-lived, lightweight kindwe're used to—and in the near future they ...

Recommended for you

Switch on sunlight for a brighter future

8 hours ago

Imagine sitting in a windowless room yet having the feeling of the sun shining on your face. This unique experience is now possible thanks to the COELUX EU-funded project which recreates the physical and ...

US urged to drop India WTO case on solar

Apr 23, 2014

Environmentalists Wednesday urged the United States to drop plans to haul India to the WTO to open its solar market, saying the action would hurt the fight against climate change.

Is nuclear power the only way to avoid geoengineering?

Apr 23, 2014

"I think one can argue that if we were to follow a strong nuclear energy pathway—as well as doing everything else that we can—then we can solve the climate problem without doing geoengineering." So says Tom Wigley, one ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

dedereu
not rated yet Feb 10, 2014
perfluoropolyether see http://en.wikiped...i/Krytox is not so safe in particular in large quantities :
The manufacturer states on Krytox tubes, "May cause mild skin and eye irritation. Contact with very hot surfaces (above 500°F/260°C) can generate fumes which can cause coughing or respiratory irritation. Large amounts could lead to lung damage which might not be apparent for several hours. These fumes may also cause flu-like symptoms.
holoman
1 / 5 (1) Feb 10, 2014
Its still a battery !

and un-reliable over time.

More news stories

One in 13 US schoolkids takes psych meds

(HealthDay)—More than 7 percent of American schoolchildren are taking at least one medication for emotional or behavioral difficulties, a new government report shows.

FDA reconsiders behavior-modifying 'shock devices'

(HealthDay)—They're likened to a dog's "shock collar" by some and called a "life-saving treatment" by others. But the days of electro-shock devices as a tool for managing hard-to-control behavior in people ...

Computer program could help solve arson cases

Sifting through the chemical clues left behind by arson is delicate, time-consuming work, but University of Alberta researchers teaming with RCMP scientists in Canada, have found a way to speed the process.