Sucker-footed fossils broaden the bat map

February 4, 2014
This is a jawbone from the newly described sucker-footed bat Phasmatonycteris phiomensis, less than half an inch in length and ~30 million years old Credit: Gregg Gunnell

Today, Madagascar sucker-footed bats live nowhere outside their island home, but new research shows that hasn't always been the case. The discovery of two extinct relatives in northern Egypt suggests the unusual creatures, which evolved sticky footpads to roost on slick surfaces, are primitive members of a group of bats that evolved in Africa and ultimately went on to flourish in South America.

A team of researchers described the two bat species from several sets of fossilized jawbones and teeth unearthed in the Sahara. The findings, reported Feb. 4 in the open-access journal PLOS ONE, represent the first formal description of the family in the fossil record and show the sucker-footed bat family to be at least 36 million years older than previously known.

"We've assumed for a long time that they were an ancient lineage based on DNA sequence studies that have placed them close to very old groups in the bat family tree," said Nancy Simmons, co-author and curator-in-charge of the American Museum of Natural History's Mammalogy Department. But until now, scientists lacked any fossil evidence to confirm it.

The discovery also shows that, like many island-dwelling, relict species, sucker-footed bats have not always been confined to their present range—they once swooped through the African skies.

Today, the sucker-footed bats consist of two species, Myzopoda aurita and M. schliemanni, endemic to Madagascar. In contrast to almost all other bats, they don't cling upside-down to cave ceilings or branches. Sucker-footed bats roost head-up, often in the furled leaves of the traveler's palm, a plant in the bird-of-paradise family. To stick to such a smooth surface, the bats evolved cup-like pads on their wrists and ankles. Scientists previously suspected the pads held the bats up by suction, but recent research has demonstrated the bats instead rely on wet adhesion, like a tree frog.

This shows upper teeth from a living sucker-footed bat species, Myzopoda aurita. Credit: Gregg Gunnell

"The fossils came from a fascinating place out in the Egyptian desert," said Gregg Gunnell, director of the Duke University Lemur Center's Division of Fossil Primates. He said the Fayum Depression in Egypt's Western Desert, where the team completed their fieldwork, is filled with the remnants of ancient and modern history: temples built for great pharaohs, Roman city ruins and even the hulls of World War II tanks. The extreme aridity helps preserve these relics as well as the famous fossil deposits where these bat teeth and jawbones were found.

The two extinct species, Phasmatonycteris phiomensis and P. butleri, date to 30 and 37 million years ago, respectively, when the environment was drastically different. Northern Africa was more tropical, said Simmons, and home to a diverse range of mammals, including primates and early members of the elephant family.

"The habitat was probably fairly forested, and there was likely a proto-Nile River, a big river that led into the ancient Tethys Ocean," said Gunnell. The fossilized teeth imply that, like their living relatives, the ancient bats fed on insects.

It's impossible to know from the fossils if the had already evolved their characteristic sucker-feet, but the teeth shed light on another aspect of bat evolution. The presence of sucker-footed bats in Africa at least 37 million years ago supports the theory that this family is one of the most primitive members of a lineage that now dominates South America.

From vampires to fruit- and nectar-eaters to carnivores, the majority of South America's bats belong to one large superfamily, known as Noctilionoidea. "We think that the superfamily originated in Africa and moved eastward as Gondwana was coming apart," Gunnell said. "These migrated to Australia, then actually went through Antarctica and up into South America using an ice-free corridor that connected the three continents until about 26 million years ago."

According to this hypothesis, the sucker-footed bat fossils showed up right where scientists expected to find them: at the literal and figurative base of the Noctilionoidea family tree.

"Now, we can unambiguously link them through Africa," Simmons said.

The third author on this paper, Erik Seiffert, received his Ph.D. from Duke and now works as an associate professor at Stony Brook University.

Explore further: Sucker-footed bats don't use suction after all (w/ Video)

More information: "New Myzopodidae (Chiroptera) from the Late Paleogene of Egypt: Emended Family Diagnosis and Biogeographic Origins of Noctilionoidea." Greg Gunnell, Nancy Simmons, and Erik Seiffert. PLOS ONE, Feb. 4, 2014. DOI: 10.1371/journal.pone.0086712

Related Stories

Sucker-footed bats don't use suction after all (w/ Video)

December 14, 2009

There are approximately 1,200 species of bats worldwide. Of that total, only six are known to roost with their heads pointed upward. Investigators did not know why, because they knew next to nothing about one key group.

Best romantic singers are male bats

July 19, 2013

Male bats appear to be the sexy singers of the animal world: they have learned to vocalize in a specific way to attract females, but once they have their attention, they change their tune – literally. They then produce ...

UA researchers trace bat killer's path

January 29, 2014

As North American bats face a death toll approaching 7 million, University of Akron scientists reveal new clues about their killer, White Nose Syndrome, or WNS. The UA researchers reveal that the deadly WNS fungus can likely ...

Bats bounce back in Europe

January 29, 2014

Europe's bat population recovered by more than 40 percent between 1993 and 2011 after decades of decline, according to a survey published by the European Environment Agency (EEA) on Thursday.

Recommended for you

Ancient genome from Africa sequenced for the first time

October 8, 2015

The first ancient human genome from Africa to be sequenced has revealed that a wave of migration back into Africa from Western Eurasia around 3,000 years ago was up to twice as significant as previously thought, and affected ...

Rare braincase provides insight into dinosaur brain

October 8, 2015

Experts have described one of the most complete sauropod dinosaur braincases ever found in Europe. The find could help scientists uncover some of the mysteries of how dinosaur brains operated, including their intellectual ...

How much for that Nobel prize in the window?

October 3, 2015

No need to make peace in the Middle East, resolve one of science's great mysteries or pen a masterpiece: the easiest way to get yourself a Nobel prize may be to buy one.

The dark side of Nobel prizewinning research

October 4, 2015

Think of the Nobel prizes and you think of groundbreaking research bettering mankind, but the awards have also honoured some quite unhumanitarian inventions such as chemical weapons, DDT and lobotomies.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.