Sticky nanoparticles fight heart disease (w/ video)

February 18, 2014

Clemson University researchers have developed nanoparticles that can deliver drugs targeting damaged arteries, a non-invasive method to fight heart disease.

Heart disease is the leading cause of death in the U.S., according to the Centers for Disease Control and Prevention. One of the standard ways to treat clogged and damaged currently is to implant vascular stents, which hold the vessels open and release such drugs as paclitaxel.

The researchers, led by Clemson bioengineering professor Naren Vyavahare, hope their advanced could be used alongside stents or in lieu of them.

"Healthy arteries have elastic fibers that provide elasticity. They are like rubber bands in the tissue that allow expansion and recoil during blood flow," Vyavahare said. "In most cardiovascular diseases, in arteries get damaged, creating hooks that can be used to target drugs."

The nanoparticles, coated with a sticky protein, latch onto damaged arteries and can deliver a drug to the site in slow release fashion. These nanoparticles can be engineered to deliver an array of drugs to the damaged or clogged artery, a common example being paclitaxel, which inhibits cell division and helps prevent growth of scar tissue that can clog arteries. These particles also have unique surfaces that allow prolonged circulation time, providing more opportunities for these particles to accumulate at the damage site.

This video is not supported by your browser at this time.

"We developed nanoparticles that have antibodies on the surface that attach to diseased sites like Velcro," said Vyavahare. "Interestingly, these newly created nanoparticles only accumulate at the damaged artery, not in the healthy arteries, enabling site-specific drug delivery."

"These nanoparticles can be delivered intravenously to target injured areas and can administer drugs over longer periods of time, thus avoiding repeated surgical interventions at the disease site," said Aditi Sinha, a Clemson graduate student and lead author on a paper soon to be published in journal Nanomedicine: Nanotechnolgy, Biology and Medicine.

The work is a promising step toward new treatments for cardiovascular and other diseases. The research team is testing the nanoparticles to determine the most effective drug dosage for vascular tissue repair. This technology can have variety of applications in other diseases, such as chronic , Marfan syndrome and elastic fiber-related disorders, such as aortic aneurysms.

Explore further: New 'nanoburrs' could add to arsenal of therapies against heart disease

Related Stories

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.