New stem cell research removes reliance on human and animal cells

Feb 05, 2014

A new study, published today in the journal Applied Materials & Interfaces, has found a new method for growing human embryonic stem cells, that doesn't rely on supporting human or animal cells.

Traditionally, these are cultivated with the help of proteins from animals, which rules out use in the treatment of humans. Growing stem cells on other human cells risks contamination with pathogens that could transmit diseases to patients.

The team of scientists led by the University of Surrey and in collaboration with Professor Peter Donovan at the University of California have developed a scaffold of carbon nanotubes upon which human stem cells can be grown into a variety of tissues. These new building blocks mimic the surface of the body's natural support cells and act as scaffolding for stem cells to grow on. Cells that have previously relied on external living cells can now be grown safely in the laboratory, paving the way for revolutionary steps in replacing tissue after injury or disease.

Dr Alan Dalton, senior lecturer from the Department of Physics at the University of Surrey said: "While carbon nanotubes have been used in the field of biomedicine for some time, their use in human has not previously been explored successfully."

"Synthetic stem cell scaffolding has the potential to change the lives of thousands of people, suffering from diseases such as Parkinson's, diabetes and heart disease, as well as vision and hearing loss. It could lead to cheaper transplant treatments and could potentially one day allow us to produce whole human organs without the need for donors."

Explore further: New method increases supply of embryonic stem cells

add to favorites email to friend print save as pdf

Related Stories

New method increases supply of embryonic stem cells

Jan 27, 2014

A new method allows for large-scale generation of human embryonic stem cells of high clinical quality. It also allows for production of such cells without destroying any human embryos. The discovery is a big step forward ...

A step closer to muscle regeneration

Dec 10, 2013

(Medical Xpress)—Muscle cell therapy to treat some degenerative diseases, including Muscular Dystrophy, could be a more realistic clinical possibility, now that scientists have found a way to isolate muscle cells from embryonic ...

Recommended for you

Brand new technology detects probiotic organisms in food

13 hours ago

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

13 hours ago

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0