How stellar death can lead to twin celestial jets

Feb 12, 2014
A Hubble Space Telescope image of the Rotten Egg Nebula, a pre-planetary nebula 5000 light years away in the constellation of Puppis. Credit: NASA/ESA & Valentin Bujarrabal (Observatorio Astronomico Nacional, Spain)

(Phys.org) —Astronomers know that while large stars can end their lives as violently cataclysmic supernovae, smaller stars end up as planetary nebulae – colorful, glowing clouds of dust and gas. In recent decades these nebulae, once thought to be mostly spherical, have been observed to often emit powerful, bipolar jets of gas and dust. But how do spherical stars evolve to produce highly aspherical planetary nebulae?

In a theoretical paper published this week in the Monthly Notices of the Royal Astronomical Society, a University of Rochester professor and his undergraduate student conclude that only "strongly interacting" binary stars – or a star and a massive planet – can feasibly give rise to these powerful .

When these smaller stars run out of hydrogen to burn they begin to expand and become Asymptotic Giant Branch (AGB) stars. This phase in a star's life lasts at most 100,000 years. At some point some of these AGB stars, which represent the distended last spherical stage in the lives of low mass stars, become "pre-planetary" nebula, which are aspherical.

"What happens to change these spherical AGB stars into non-spherical nebulae, with two jets shooting out in opposite directions?" asks Eric Blackman, professor of physics and astronomy at Rochester. "We have been trying to come up with a better understanding of what happens at this stage."

For the jets in the nebulae to form, the spherical AGB stars have to somehow become non-spherical and Blackman says that astronomers believe this occurs because AGB stars are not single stars but part of a binary system. The jets are thought to be produced by the ejection of material that is first pulled and acquired, or "accreted," from one object to the other and swirled into a so-called accretion disk. There are, however, a range of different scenarios for the production of these accretion disks. All these scenarios involve two stars or a star and a massive planet, but it has been hard to rule any of them out until now because the "core" of the AGBs, where the disks form, are too small to be directly resolved by telescopes. Blackman and his student, Scott Lucchini, wanted to determine whether the binaries can be widely separated and weakly interacting, or whether they must be close and strongly interacting.

By studying the jets from pre-planetary and planetary nebulae, Blackman and Lucchini were able to connect the energy and momentum involved in the accretion process with that in the jets; the process of accretion is what in effect provides the fuel for these jets. As mass is accreted into one of the disks it loses gravitational energy. This is then converted into the kinetic energy and momentum of the outflowing jets, which is the mass that is expelled at a certain speed. Blackman and Lucchini determined the minimum power and minimum mass flows that these accretion processes needed to produce to account for the properties of the observed jets. They then compared the requirements to specific existing accretion models, which have predicted specific power and mass flow rates.

They found that only two types of accretion models, both of which involve the most strongly interacting binaries, could create these jetted pre-planetary nebulae. In the first type of model, the "Roche lobe overflow," the companions are so close that the AGB stellar envelope gets pulled into a disk around the companion. In the second type of models, or "common envelope" models, the companion is even closer and fully enters the envelope of the AGB star so that the two objects have a "common" envelope. From within the common envelope, very high accretion rate disks can either form around the companion from the AGB star material, or the companion can be shredded into a disk around the AGB star core. Both of these scenarios could provide enough energy and momentum to produce the jets that have been observed.

The name planetary nebulae originally came from astronomer William Herschel, who first observed them in the 1780s, and thought they were newly forming gaseous planets. Although the name has persisted, now we know that they are in fact the end states of low mass , and would only involve planets if a binary companion in one of the scenarios above were in fact a large planet. "Pre-planetary" and "planetary" nebulae are different in the nature of the light they produce; pre-planetary nebulae reflect light, whereas mature planetary nebulae shine through ionization (where atoms lose or gain electrons). Pre-planetary nebulae shoot out two jets of gas and dust, the latter forming in the jets as the outflows expand and cool. This dust reflects the light produced by the hotter core. In planetary nebulae, thought to be the evolved stage of pre-, the core is exposed and the hotter radiation it emits ionizes the gas in the now weaker jets, which in turn glow.

Explore further: Magnetic field may shape 'blooming' star

More information: The paper is available from mnrasl.oxfordjournals.org/content/early/2014/01/30/mnrasl.slu001
A preprint of the paper is available from arxiv.org/pdf/1312.5372.pdf

Related Stories

How much do binary stars shape planetary nebulae?

Jun 16, 2011

Planetary nebulae come in a dazzling array of shapes, from spherical shells of gas, to blobby structures barely containing symmetry at all. Controversy has surrounded the cause for this diversity. Could it ...

Hubble observes glowing, fiery shells of gas

Mar 04, 2013

(Phys.org) —It may look like something from "The Lord of the Rings," but this fiery swirl is actually a planetary nebula known as ESO 456-67. Set against a backdrop of bright stars, the rust-colored object ...

Bizarre alignment of planetary nebulae

Sep 04, 2013

Astronomers have used the NASA/ESA Hubble Space Telescope and ESO's New Technology Telescope to explore more than 100 planetary nebulae in the central bulge of our galaxy. They have found that butterfly-shaped ...

Hubble sees a planetary nebula in the making

Oct 12, 2012

(Phys.org)—The Universe is filled with mysterious objects. Many of them are as strange as they are beautiful. Among these, planetary nebulae are probably one of the most fascinating objects to behold in ...

Recommended for you

ESO image: A study in scarlet

9 hours ago

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

Apr 15, 2014

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Pushy neighbors force stellar twins to diverge

Apr 15, 2014

(Phys.org) —Much like an environment influences people, so too do cosmic communities affect even giant dazzling stars: Peering deep into the Milky Way galaxy's center from a high-flying observatory, Cornell ...

Image: Multiple protostars within IRAS 20324+4057

Apr 14, 2014

(Phys.org) —A bright blue tadpole appears to swim through the inky blackness of space. Known as IRAS 20324+4057 but dubbed "the Tadpole", this clump of gas and dust has given birth to a bright protostar, ...

User comments : 0

More news stories

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...