Spectrum imaging used to measure atom concentrations at atomic resolution

Feb 28, 2014
Spectrum imaging used to measure atom concentrations at atomic resolution

The ability to locate and count small numbers of impurity atoms could lead to advances in modern electronics and optical fiber communication networks.

In research published today in Physical Review Letters, physicists from Monash University, the University of Melbourne and TU Graz, Austria, show a method called spectrum imaging can be used to measure atom concentrations at atomic resolution.

By using spectrum images to visualise where atoms are and how they are bonded, scientists will gain further insight into the properties of . Spectrum imaging provides a digital image encoding this complex information through colour.

Co-author Dr Scott Findlay, of Monash University's School of Physics, said the technique could be a useful tool to characterise new materials.

"When probed with an , atoms give that beam an energy spectrum in a way that is like adding colour. Distinct atomic species add distinctive colours," Dr Findlay said.

"Imagine putting several open paint tins inside a waterfall. With careful measurements on the pool below, one could determine not just the colours but also the number of different tins used. Type and number – that's quantitative spectrum imaging at low spatial resolution."

However, precision analysis at atomic resolution is more challenging.

"Spectrum imaging at atomic resolution is more like a game of pinball with different coloured, freshly-painted pins," Dr Findlay said.

"If the ball ends up with five red, two blue and one green paint-spots, that doesn't necessarily tell us the number of differently coloured pegs present, just those that were hit on the path the ball happened to take."

Dr Findlay said scanning an electron beam across the sample allowed them to map the specimen structure but also provided the information needed to untangle the problem.

"With an understanding of how the electron beam interacts with the specimen – how the ball bounces – we can establish both the location of the atoms – the pins – and their species – the colours," Dr Findlay said.

"The ability to map out the concentrations of different atomic species at is a significant step towards developing new materials and technology."

Dr Findlay said more research was needed to develop the new technique further.

Explore further: The unifying framework of symmetry reveals properties of a broad range of physical systems

More information: "Quantitative Elemental Mapping at Atomic Resolution Using X-Ray Spectroscopy." G. Kothleitner, M. J. Neish, N. R. Lugg, S. D. Findlay, W. Grogger, F. Hofer, and L. J. Allen. Phys. Rev. Lett. 112, 085501 – Published 26 February 2014. DOI: 10.1103/PhysRevLett.112.085501

add to favorites email to friend print save as pdf

Related Stories

Sharpening the focus of microscopes

Dec 02, 2011

A new advanced imaging scheme—with a resolution ten times better than that of its counterparts to date—can resolve objects as small as atoms1. Previously, the maximum resolution of optical instruments, ...

Novel beams made of twisted atoms

Aug 07, 2013

Physicists have, for the first time, now built a theoretical construct of beams made of twisted atoms. These findings by Armen Hayrapetyan and colleagues at Ruprecht-Karls-University Heidelberg in Germany ...

Recommended for you

What time is it in the universe?

Aug 29, 2014

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0