Spectrum imaging used to measure atom concentrations at atomic resolution

February 28, 2014
Spectrum imaging used to measure atom concentrations at atomic resolution

The ability to locate and count small numbers of impurity atoms could lead to advances in modern electronics and optical fiber communication networks.

In research published today in Physical Review Letters, physicists from Monash University, the University of Melbourne and TU Graz, Austria, show a method called spectrum imaging can be used to measure atom concentrations at atomic resolution.

By using spectrum images to visualise where atoms are and how they are bonded, scientists will gain further insight into the properties of . Spectrum imaging provides a digital image encoding this complex information through colour.

Co-author Dr Scott Findlay, of Monash University's School of Physics, said the technique could be a useful tool to characterise new materials.

"When probed with an , atoms give that beam an energy spectrum in a way that is like adding colour. Distinct atomic species add distinctive colours," Dr Findlay said.

"Imagine putting several open paint tins inside a waterfall. With careful measurements on the pool below, one could determine not just the colours but also the number of different tins used. Type and number – that's quantitative spectrum imaging at low spatial resolution."

However, precision analysis at atomic resolution is more challenging.

"Spectrum imaging at atomic resolution is more like a game of pinball with different coloured, freshly-painted pins," Dr Findlay said.

"If the ball ends up with five red, two blue and one green paint-spots, that doesn't necessarily tell us the number of differently coloured pegs present, just those that were hit on the path the ball happened to take."

Dr Findlay said scanning an electron beam across the sample allowed them to map the specimen structure but also provided the information needed to untangle the problem.

"With an understanding of how the electron beam interacts with the specimen – how the ball bounces – we can establish both the location of the atoms – the pins – and their species – the colours," Dr Findlay said.

"The ability to map out the concentrations of different atomic species at is a significant step towards developing new materials and technology."

Dr Findlay said more research was needed to develop the new technique further.

Explore further: New imaging technique reveals the atomic structure of nanocrystals

More information: "Quantitative Elemental Mapping at Atomic Resolution Using X-Ray Spectroscopy." G. Kothleitner, M. J. Neish, N. R. Lugg, S. D. Findlay, W. Grogger, F. Hofer, and L. J. Allen. Phys. Rev. Lett. 112, 085501 – Published 26 February 2014. DOI: 10.1103/PhysRevLett.112.085501

Related Stories

Sharpening the focus of microscopes

December 2, 2011

A new advanced imaging scheme—with a resolution ten times better than that of its counterparts to date—can resolve objects as small as atoms1. Previously, the maximum resolution of optical instruments, including ...

Novel beams made of twisted atoms

August 7, 2013

Physicists have, for the first time, now built a theoretical construct of beams made of twisted atoms. These findings by Armen Hayrapetyan and colleagues at Ruprecht-Karls-University Heidelberg in Germany are about to be ...

Recommended for you

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.