Spectrum imaging used to measure atom concentrations at atomic resolution

Feb 28, 2014
Spectrum imaging used to measure atom concentrations at atomic resolution

The ability to locate and count small numbers of impurity atoms could lead to advances in modern electronics and optical fiber communication networks.

In research published today in Physical Review Letters, physicists from Monash University, the University of Melbourne and TU Graz, Austria, show a method called spectrum imaging can be used to measure atom concentrations at atomic resolution.

By using spectrum images to visualise where atoms are and how they are bonded, scientists will gain further insight into the properties of . Spectrum imaging provides a digital image encoding this complex information through colour.

Co-author Dr Scott Findlay, of Monash University's School of Physics, said the technique could be a useful tool to characterise new materials.

"When probed with an , atoms give that beam an energy spectrum in a way that is like adding colour. Distinct atomic species add distinctive colours," Dr Findlay said.

"Imagine putting several open paint tins inside a waterfall. With careful measurements on the pool below, one could determine not just the colours but also the number of different tins used. Type and number – that's quantitative spectrum imaging at low spatial resolution."

However, precision analysis at atomic resolution is more challenging.

"Spectrum imaging at atomic resolution is more like a game of pinball with different coloured, freshly-painted pins," Dr Findlay said.

"If the ball ends up with five red, two blue and one green paint-spots, that doesn't necessarily tell us the number of differently coloured pegs present, just those that were hit on the path the ball happened to take."

Dr Findlay said scanning an electron beam across the sample allowed them to map the specimen structure but also provided the information needed to untangle the problem.

"With an understanding of how the electron beam interacts with the specimen – how the ball bounces – we can establish both the location of the atoms – the pins – and their species – the colours," Dr Findlay said.

"The ability to map out the concentrations of different atomic species at is a significant step towards developing new materials and technology."

Dr Findlay said more research was needed to develop the new technique further.

Explore further: Breakthrough in OLED technology

More information: "Quantitative Elemental Mapping at Atomic Resolution Using X-Ray Spectroscopy." G. Kothleitner, M. J. Neish, N. R. Lugg, S. D. Findlay, W. Grogger, F. Hofer, and L. J. Allen. Phys. Rev. Lett. 112, 085501 – Published 26 February 2014. DOI: 10.1103/PhysRevLett.112.085501

add to favorites email to friend print save as pdf

Related Stories

Sharpening the focus of microscopes

Dec 02, 2011

A new advanced imaging scheme—with a resolution ten times better than that of its counterparts to date—can resolve objects as small as atoms1. Previously, the maximum resolution of optical instruments, ...

Novel beams made of twisted atoms

Aug 07, 2013

Physicists have, for the first time, now built a theoretical construct of beams made of twisted atoms. These findings by Armen Hayrapetyan and colleagues at Ruprecht-Karls-University Heidelberg in Germany ...

Recommended for you

Breakthrough in OLED technology

1 hour ago

Organic light emitting diodes (OLEDs), which are made from carbon-containing materials, have the potential to revolutionize future display technologies, making low-power displays so thin they'll wrap or fold ...

Throwing light on a mysterious human 'superpower'

4 hours ago

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.