Sociable receptors: In pairs, in groups or in a crowd

Feb 05, 2014
Countless Eph receptors (green) can be found on the surface of this neuron. When they are artificially induced to form groups, the nerve process, or axon (red tip), withdraws. Credit: MPI of Neurobiology / Dudanova

When cells migrate in the body, for instance, during development, or when neurons establish new connections, cells need to know where they are going. A 'wrong turn' will generally cause disease or developmental disorders. The cells take direction cues from other cells with which they interact, and which they then repel after a short period of contact. Among those direction cues are ephrin ligands, recognized by Eph receptors on the cell. Together with colleagues from the Max Planck Institute of Molecular Physiology in Dortmund, scientists at the Max Planck Institute of Neurobiology in Martinsried have discovered that Eph receptors must form groups of three or four in order to become active and transmit the signal. Furthermore, the ratio of such multimers to inactive dimers determines the strength of the cellular repulsion response. The new findings help scientists understand how cells communicate and offer a point of departure for studying diseases related to breakdowns in this guidance system.

When people get together, there is usually a lot of interaction. Our behave similarly. When cells grow close to each other during development, they need to communicate with the surrounding cells to establish whether they are in the right place in the organism and which cells they should connect with. This communication is especially critical in the brain, where adhesion and repulsion processes between neurons occur continuously. It is only when the right cells connect that something new can be learned, for example. Emerging tumours also must exchange information with the cells around them to be able to grow. "It is of fundamental importance to understand how cells communicate with one another", says Rüdiger Klein, Director at the Max Planck Institute of Neurobiology. He has been studying the language of the cells for years together with colleagues in his department. Their research focuses on the so-called Eph and their ephrin ligands.

Cell communication via ephrin/Eph receptors comes into play in most encounters between cells. As a result of this communication, one cell usually repels the other, which continues to grow in another direction. Many such instances of interaction guide the cell to the right place. The guidance system itself – the ephrins and Eph receptors – are found on the cell surface. When the ephrin and the Eph receptor of two opposing cells meet, they form an ephrin/Eph complex. This triggers in one or both of the cells, which eventually cause the detachment of the ephrin/Eph complex and the repulsion of the two cells from one another.

"Many receptor systems have developed a security mechanism to prevent false alarms from triggering the cellular processes", explains Rüdiger Klein. "A signal is only transmitted to the cell if two receptor/ligand pairs form a dimer." However, in the case of ephrins and Eph receptors, things are different. Ephrin/Eph complexes form dimers, but often also larger groups on the cell membranes. Scientists were previously not sure how this affects repulsion and repulsive signalling strength.

The neurobiologists in Martinsried and their colleagues from the Max Planck Institute of Molecular Physiology in Dortmund have now been able to artificially trigger and study the formation of groups of Eph receptors in cell culture. The results show that the otherwise usual dimers are inactive when made up of Eph receptors. Only trimers and tetramers triggered the signals that caused cell repulsion. However, the scientists' working hypothesis that a larger group would trigger a stronger signal turned out to be too simple. "It took us quite some time to figure out the system", says Andreas Schaupp, first author of the study. "In fact, it is not the size of each individual group that matters, but the composition of the entire population of groups."

The more trimers and tetramers and the fewer dimers present in the cell membrane, the stronger the repulsion signal. In contrast, a higher abundance of dimers and a smaller number of multimers produce a weaker reaction or none at all. "Thanks to this mechanism, a cell can grade its response from forcing another cell to make a U-turn to simply guiding it past at close range", Rüdiger Klein says. This is an important step in understanding how migrating and growing cells navigate, and why this guidance system breaks down in some diseases.

Explore further: Parkinson gene: Nerve growth factor halts mitochondrial degeneration

More information: Andreas Schaupp, Ola Sabet, Irina Dudanova, Marion Ponserre, Philippe Bastiaens, Rüdiger Klein, The composition of EphB2 clusters determines the strength in the cellular repulsion response, Journal of Cell Biology, 3 February 2014

Related Stories

Two-way traffic in the spinal cord

Dec 19, 2013

The progress a baby makes in the first year of life is amazing: a newborn can only wave its arms and legs about randomly, but not so long after the baby can reach out and pick up a crumb from the carpet. ...

A molecule keeps anxiety down

Aug 19, 2008

(PhysOrg.com) -- The link between emotions and experiences determines many aspects of our daily life. It allows us to recognize pretty objects or harmful situations. These links are created when nerve cells ...

EphA4 -- the molecular transformer

Oct 23, 2009

(PhysOrg.com) -- EphA4 is a protein which is attached to the surfaces of many types of human cells and plays a role in a wide range of biological processes. EphA4 functions by binding to ephrin ligands, cell ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.