Scientists discover bulk material that exhibits monolayer behavior

Feb 19, 2014 by Lisa Zyga feature
(a, b) Two flakes of rhenium disulfide, one with the layers perpendicular (red square) and the other parallel (green square) to the electron beam, confirming high crystallinity. (c) Simulated diffraction patterns and (d) the nano-beam electron diffraction pattern suggest a lack of stacking—and therefore lack of coupling—between layers. Credit: Tongay, et al. ©2014 Macmillan Publishers Limited

( —Most materials behave very differently in bulk (3D) form than they do in monolayer (2D) form. The difference occurs because of weak forces holding the multiple layers of a bulk material together, which results in electronic and vibrational coupling that alters the material's properties. Now in a new study, researchers have discovered a new material, rhenium disulfide (ReS2), that behaves like a single monolayer of ReS2 when in bulk form. Because preparing large sheets of monolayer material is often challenging, the bulk material could provide a simple way to harness the attractive properties normally found only in monolayers. As such, the material may be ideal for flexible solar cells and super-lubricant materials.

The team of researchers, from institutions in China, the US, Belgium, and Taiwan, have published a paper on the new material in a recent issue of Nature Communications.

"Our discovery implies that bulk ReS2 would be an ideal platform to study 2D phenomena," coauthor Junqiao Wu, Professor of Materials Science at the University of California, Berkeley, told Wu is also affiliated with the Chinese Academy of Sciences in Beijing and Lawrence Berkeley National Laboratory in the US. "On the more applied side, the fact that bulk and multilayer ReS2 both have a direct bandgap (while other TMDs need single layers) may enable more efficient light-emitting and light-harvesting devices."

ReS2 is the newest member of a new class of materials called transition metal dichalcogenides (TMDs). As their name suggests, TMDs have the chemical formula MX2, where M is a transition metal and X is a chalcogen. Recently discovered TMDs, such as MoS2 and WSe2, exhibit attractive properties such as flexibility, stability, and a low operating voltage in various device configurations. One of the most important properties of monolayer TMDs is that they have direct bandgaps, which allows them to absorb and emit light efficiently and makes them promising candidates for next-generation flexible optoelectronics and photovoltaics materials.

However, so far these appealing properties of TMDs occur only when they are in single layers; in bulk form, coupling between the layers gives the materials an indirect bandgap, which diminishes their optical and electronic properties.

(a) Compared to molybdenum disulfide, rhenium disulfide has a distorted crystal structure, which prevents layers from coupling. (b) The electronic band structure of bulk (orange solid curves) and monolayer (purple dashed curves) of rhenium disulfide shows that both have a nearly identical bandgap. (c) Rhenium disulfide has a significantly shallower energy well than molybdenum disulfide, implying much weaker interlayer coupling energy. Credit: Tongay, et al. ©2014 Macmillan Publishers Limited

ReS2 is different than the previously discovered TMDs because, as Wu explained, it has a direct bandgap in both bulk and monolayer form. As a result, bulk ReS2 has the potential to offer properties that other TMDs have only in monolayer form. One example of this is photoluminescence. In conventional TMDs such as MoS2 and WSe2, the photoluminescence intensity is enhanced by about 3 orders of magnitude in monolayer form compared to bulk form because of the crossover from the direct to indirect bandgap. In contrast, the photoluminescence intensity of bulk ReS2 is actually slightly higher than that of monolayer ReS2 because the monolayers in the bulk form are largely decoupled, giving bulk ReS2 a direct bandgap.

By investigating bulk ReS2 using high-resolution transmission electron microscopy, electron diffraction, and density functional theory calculations, the researchers found that the new material has very weak interlayer coupling. Specifically, they calculated that the coupling energy of ReS2 is less than 8% of that of MoS2.

According to their analysis, this weak coupling can be explained by ReS2's distorted crystal structure. ReS2 can have an octahedral crystal structure, but a distorted octahedral structure is more energetically favorable. This distortion causes the Re atoms to form zigzag Re chains, which in turn prevents the layers from stacking by eliminating the energy benefit that occurs in other TMDs. As a result, there is no energy incentive for the layers to couple to each other in bulk ReS2 as there is in other TMDs.

In the future, the researchers plan to further investigate ReS2's unusual properties, while experimenting with doping, alloying, and high pressures.

"We are currently designing new that are likely to generate large interest in the field and also engineering ReS2's properties by creating defects in the material," said coauthor Dr. Sefaattin Tongay of the University of California, Berkeley, and the Chinese Academy of Sciences.

Explore further: How to make graphene superconducting

More information: Sefaattin Tongay, et al. "Monolayer behavior in bulk ReS2 due to electronic and vibrational decoupling." Nature Communications. DOI: 10.1038/ncomms4252

add to favorites email to friend print save as pdf

Related Stories

How to make graphene superconducting

Feb 11, 2014

Whenever a new material is discovered, scientists are eager to find out whether or not it can be superconducting. This applies particularly to the wonder material graphene. Now, an international team around ...

Probing the surface of pyrite

Oct 01, 2013

Pyrite—perhaps better known as "fool's gold" for its yellowish metallic appearance—is a common, naturally occurring mineral. It holds promise as a high-tech material, with potential uses in solar cells, ...

Recommended for you

Galaxy dust findings confound view of early Universe

16 hours ago

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

Jan 30, 2015

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

Jan 30, 2015

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 21, 2014
I need the recent work of InGaN-InN solar cell recent works. Can anyone help me ?>

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.