Scientists produce a novel form of artificial graphene

Feb 14, 2014
A potentially revolutionnary material: Scientists produce a novel form of artificial graphene
Artificial Graphene

A new breed of ultra thin super-material has the potential to cause a technological revolution. "Artificial graphene" should lead to faster, smaller and lighter electronic and optical devices of all kinds, including higher performance photovoltaic cells, lasers or LED lighting.

For the first time, scientists are able to produce and have analysed artificial from traditional semiconductor materials. Such is the scientific importance of this breakthrough these findings were published recently in one of the world's leading physics journals, Physical Review X. A researcher from the University of Luxembourg played an important role in this highly innovative work.

Graphene (derived from graphite) is a one atom thick of carbon atoms. This strong, flexible, conducting and transparent material has huge scientific and technological potential. Only discovered in 2004, there is a major global push to understand its potential uses. Artificial graphene has the same honeycomb structure, but in this case, instead of , nanometer-thick are used. Changing the size, shape and chemical nature of the nano-crystals, makes it possible to tailor the material to each specific task.

The University of Luxembourg is heavily involved in cross-border, multidisciplinary research projects. In this case it partnered with the Institute for Electronics, Microelectronics, and Nanotechnology (IEMN) in Lille, France, the Debye Institute for Nanomaterials Science and the Institute for Theoretical Physics of the University of Utrecht, Netherlands and the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany.

University of Luxembourg researcher Dr. Efterpi Kalesaki is the first author of the article appearing in the Physical Review X . Dr. Kalesaki said: "these self‐assembled semi-conducting nano-crystals with a are emerging as a new class of systems with great potential." Prof Ludger Wirtz, head of the Theoretical Solid-State Physics group at the University of Luxembourg, added: "artificial graphene opens the door to a wide variety of materials with variable nano‐geometry and 'tunable' properties."

Explore further: Wonder material silicene has suicidal tendencies

More information: Dirac Cones, "Topological Edge States, and Nontrivial Flat Bands in Two-Dimensional Semiconductors with a Honeycomb Nanogeometry." E. Kalesaki, C. Delerue, C. Morais Smith, W. Beugeling, G. Allan, D. Vanmaekelbergh. Physical Review X 4, 011010 (2014) (Received 18 July 2013; revised manuscript received 25 November 2013; published 30 January 2014)

add to favorites email to friend print save as pdf

Related Stories

Wonder material silicene has suicidal tendencies

Jan 14, 2014

The semiconductor industry of the future had high expectations of the new material silicene, which shares a lot of similarities with the 'wonder material' graphene. However, researchers of the MESA+ Research ...

How to make graphene superconducting

Feb 11, 2014

Whenever a new material is discovered, scientists are eager to find out whether or not it can be superconducting. This applies particularly to the wonder material graphene. Now, an international team around ...

Researchers invent 'sideways' approach to 2-D hybrid

Jan 09, 2014

(Phys.org) —Researchers at the Department of Energy's Oak Ridge National Laboratory and the University of Tennessee, Knoxville have pioneered a new technique for forming a two-dimensional, single-atom sheet ...

Recommended for you

Copper shines as flexible conductor

21 hours ago

Bend them, stretch them, twist them, fold them: modern materials that are light, flexible and highly conductive have extraordinary technological potential, whether as artificial skin or electronic paper.

Nanoparticles may aid oil recovery, frack fluid tracking

23 hours ago

Two Colorado State University researchers are examining how nanoparticles move underground, knowledge that could eventually help improve recovery in oil fields and discover where hydraulic fracking chemicals ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

User comments : 0