Robust systems persist in response to mutations

Feb 21, 2014 by John German

At first glance, robustness and evolvability—two keys to the continued existence of life—look incompatible. Living things need robust genes; otherwise, any mutation could spell death. At the same time, a species needs to exploit mutations to evolve, adapt, and survive in a changing world.

A study out today in the journal Science suggests that not only are robustness and evolvability compatible, they in fact go hand in hand.

"They seem to be opposite traits almost," says University of Zurich biologist and SFI External Professor Andreas Wagner. "If a system is robust, it will persist in the face of mutations. But if you actually want to be able to evolve, you need to be able to vary in response to mutations. That's the problem right there."

But Wagner and postdoctoral fellow Joshua Payne argue that far from being opposites, robustness and evolvability are two sides of the same coin. Their study focused on 104 mouse and 89 yeast transcription factors, special proteins responsible for regulating gene expression.

To do their jobs, transcription factors interact with DNA sequences called binding sites; usually a given transcription factor can attach to more than one binding site. Payne and Wagner found that the more sites a transcription factor can bind to—and the more one can "hop" from one compatible site to the next through single mutations—the more robust the transcription factor's function.

What's more, that makes it easier for a population of, for example, mice or yeast to find new, potentially useful mutations—the key word being "population." When their transcription factors are robust, each member of a group can perform the same biological functions despite great diversity in the underlying binding-site DNA. In turn, their offspring will have an even greater diversity, most maintaining the original ' functions, some with harmful , but some with new, valuable functions.

The project is part of Payne and Wagner's efforts to understand the origins of biological diversity. Invoking the words of the Dutch botanist Hugo de Vries, Wagner notes that "natural selection can explain the survival of the fittest, but it cannot explain the arrival of the fittest."

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: The Robustness and Evolvability of Transcription Factor Binding Sites. Joshua L. Payne and Andreas Wagner. Science 21 February 2014: 343 (6173), 875-877. DOI: 10.1126/science.1249046

Related Stories

Cell memory mechanism discovered

Aug 15, 2013

The cells in our bodies can divide as often as once every 24 hours, creating a new, identical copy. DNA binding proteins called transcription factors are required for maintaining cell identity. They ensure that daughter cells ...

Genetic switches play big role in human evolution

Jun 12, 2013

(Phys.org) —A Cornell study offers further proof that the divergence of humans from chimpanzees some 4 million to 6 million years ago was profoundly influenced by mutations to DNA sequences that play roles ...

Errant gliding proteins yield long-sought insight

Nov 11, 2013

In order to react effectively to changes in the surroundings, bacteria must be able to quickly turn specific genes on or off. Although the overall mechanisms behind gene regulation have long been known, the fine details have ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.