Robotic fish aids understanding of how animals move

Feb 15, 2014

The weakly electric black ghost knifefish of the Amazon basin has inspired Northwestern University's Malcolm MacIver and an interdisciplinary team of researchers to develop agile fish robots that could lead to a vast improvement in underwater vehicles used to study fragile coral reefs, repair damaged deep-sea oil rigs or investigate sunken ships.

MacIver will discuss the research at a press briefing, "Robots from Nature: Making Mechanical Animals," to be held on Saturday, Feb. 15, in Vevey Room 3 of the Swissôtel Chicago. The briefing is part of the American Association for the Advancement of Science (AAAS) annual meeting in Chicago. He also will speak about "Electric Fish Robotics" as part of the symposium "Intelligent Autonomous Robots: Biologically Inspired Engineering" to be held on Sunday, Feb. 16, in Columbus KL of the Hyatt Regency Chicago.

"Our technology for working in water is not very advanced," said MacIver, a robotics expert who has studied the black ghost knifefish for two decades. "Current are large and lack agility, which means that working close to living or manmade structures is nearly impossible. We've taken lessons learned from the knifefish about movement and non-visual sensing and developed new technologies that should improve underwater vehicles."

MacIver is an associate professor of mechanical and of biomedical engineering at Northwestern's McCormick School of Engineering and Applied Science. His work at the intersection of robotics and biology has led to consulting for science fiction movies and TV series, including "Tron: Legacy" (2010), "Terminator: Genesis" (2015) and "Caprica."

The black ghost knifefish hunts at night in the murky rivers of the Amazon basin using closely integrated sensing and movement systems. It has the unique ability to sense with a self-generated weak electric field around its entire body (electrosense) and to swim in multiple directions. The fish moves both horizontally (forward and backward) as well as vertically using a ribbon-like fin on the underside of its body.

MacIver and colleagues in Northwestern's Neuroscience and Robotics Lab have developed more than half a dozen robots based on the weakly electric knifefish. A major motivation for creating the robotic models of the knifefish is to generate a better understanding of how the nervous system combines the acquisition of information with movement.

Future integration of electrosense and ribbon fin technology into a knifefish should result in a vehicle capable of navigating complex 3-D geometries in murky waters, tasks that are impossible with current underwater vehicles.

Explore further: Scientists study 'fishy' behavior to solve an animal locomotion mystery (w/ Video)

add to favorites email to friend print save as pdf

Related Stories

Robotic ghost knifefish is born (w/ Video)

Jan 19, 2011

(PhysOrg.com) -- Researchers at Northwestern University have created a robotic fish that can move from swimming forward and backward to swimming vertically almost instantaneously by using a sophisticated, ribbon-like fin.

Electric fish charges up research on animal behavior

Apr 10, 2012

An electric eel can generate enough current to stun its prey, just like a Taser. Weakly electric fish can also generate electricity, but not enough to do any harm. "Weakly electric fish are unique in that they produce and ...

Study looks at sensing, movement and behavior

Nov 20, 2007

Driving down a country road at night your car’s headlights illuminate a deer in your path, and the creature doesn’t move. Depending on your speed and other conditions, chances are good you will hit the deer. And if you ...

Recommended for you

A robot dives into search for Malaysian Airlines flight

Apr 18, 2014

In the hunt for signs of Malaysian Airlines flight MH370—which disappeared on March 8 after deviating for unknown reasons from its scheduled flight path—all eyes today turn to a company that got its start ...

Simplicity is key to co-operative robots

Apr 16, 2014

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Students turn $250 wheelchair into geo-positioning robot

Apr 16, 2014

Talk about your Craigslist finds! A team of student employees at The University of Alabama in Huntsville's Systems Management and Production Center (SMAP) combined inspiration with innovation to make a $250 ...

Using robots to study evolution

Apr 14, 2014

A new paper by OIST's Neural Computation Unit has demonstrated the usefulness of robots in studying evolution. Published in PLOS ONE, Stefan Elfwing, a researcher in Professor Kenji Doya's Unit, has succes ...

User comments : 0

More news stories

First steps towards "Experimental Literature 2.0"

As part of a student's thesis, the Laboratory of Digital Humanities at EPFL has developed an application that aims at rearranging literary works by changing their chapter order. "The human simulation" a saga ...

TCS, Mitsubishi to create new Japan IT services firm

India's biggest outsourcing firm Tata Consultancy Services (TCS) and Japan's Mitsubishi Corp said Monday they are teaming up to create a Japanese software services provider with annual revenues of $600 million.

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Meth mouth menace

Something was up in Idaho. While visiting a friend in Athol, a small town north of Coeur d'Alene, Jennifer Towers, director of research affairs at the Tufts University School of Dental Medicine, noticed ...