New research reveals role of methionine in enzyme catalysis

Feb 27, 2014
New research reveals role of methionine in enzyme catalysis
Methionine (Met53, bottom of figure) stabilizes the transition state for the hydride transfer reaction in phosphite dehydrogenase (from QM/MM modelling). Credit: Dr Kara Ranaghan

The first convincing evidence that the amino acid methionine plays a role in catalysis in an enzyme has been uncovered by researchers from the University of Bristol. Previously, it was thought that methionine was only involved in structure and binding, not in making reactions happen in enzymes.

Using molecular simulations, Dr Kara Ranaghan and Professor Adrian Mulholland from Bristol's School of Chemistry found an interesting interaction involving a particular residue in the phosphite dehydrogenase.

Their collaborators at the University of Illinois at Urbana-Champaign, US, led by Professor Wilfred van der Donk, then investigated this effect by mutating the methionine and replacing it with either natural or unnatural amino acids.

These experiments showed that replacing the methionine slowed down the rate of the without significantly changing other properties of the enzyme.  This indicates that it is involved in catalysis, that is, in making the reaction happen more quickly in the enzyme.

QM/MM (quantum mechanics/molecular mechanics) simulations of the reaction then showed how the methionine is likely to do this by stabilizing a particular group in the protein during the reaction.

Analysis of structural databases by Bristol's Dr Tiddo Mooibroek, Dr Gail Bartlett and Professor Dek Woolfson showed that this type of interaction is also seen in other proteins and other molecules.

Professor Mulholland said: "As our research indicates that this type of interaction is likely to be important in other enzymes, it could ultimately help in the design of new proteins with applications in medicine and bioengineering." 

Explore further: Why plants don't get sunburn

More information: "A catalytic role for methionine revealed by a combination of computation and experiments on phosphite dehydrogenase." Kara E. Ranaghan, John E. Hung, Gail J. Bartlett, Tiddo J. Mooibroek, Jeremy N. Harvey,ab   Derek N. Woolfson,bd   Wilfred A. van der Donk and Adrian J. Mulholland. Chem. Sci., 2014, Advance Article
DOI: 10.1039/C3SC53009D.

add to favorites email to friend print save as pdf

Related Stories

Quantum biology and Ockham's razor

Feb 06, 2012

(PhysOrg.com) -- In a paper just published in Nature Chemistry, a team of University of Bristol scientists explores whether new models or concepts are needed to tackle one of the 'grand challenges' of che ...

Enzyme catalysis unravelled in new research

Oct 07, 2013

(Phys.org) —New research by the School of Chemistry has significantly advanced our understanding of how enzymes (proteins) increase the rate of chemical reaction. Now potentially able to achieve greater ...

New insight into how 'tidying up' enzymes work

Mar 28, 2011

A new discovery about how molecules are broken down by the body, which will help pharmaceutical chemists design better drugs, has been made by researchers at the University of Bristol.

Understanding lethal synthesis

Oct 07, 2011

(PhysOrg.com) -- The chemical reaction which makes some poisonous plants so deadly has been described by researchers at the University of Bristol in a paper published today in Angewandte Chemie.

Recommended for you

Why plants don't get sunburn

23 hours ago

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

'Sticky' ends start synthetic collagen growth

Oct 27, 2014

Rice University researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends.

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.