Quest for jellyfish robot leads to discovery of bending rules for animal wing, fin tips

Feb 18, 2014
Engineers are collaborating with biologists to replicate the jellyfish's efficient motion in a swimming robot. Credit: Brad Gemmell

A Navy-sponsored project to design a biologically inspired, swimming jellyfish robot has led scientists to the surprising discovery of common bending rules for the tips of wings, fins, flukes, mollusk feet, and other propulsors across a broad range of animal species.

The study, led by John H. Costello of Providence College and the Marine Biological Laboratory (MBL) in Woods Hole, where he is a visiting scientist, is published this week in Nature Communications.

By studying videos of 59 different —from fruit flies to humpback whales—propelling in steady-state motion through air or water, the team discovered that the animals' propulsors bend in a similar way at the tip, with a highly constrained and predictable range of characteristic movements. (Steady-state motion is continual, replicable cycles of propulsive motion, in contrast to rapid acceleration or deceleration.)

"We were interested in looking at how many animals use flexible margins (or tips) on their propulsors because we know in the vehicle, propulsive proficiency improved by orders of magnitude when we put a passive, flexible, silicone margin around the [jellyfish] bell," Costello says. "The question for us was, how and why does flexibility increase thrust? And from an engineering standpoint, how do you incorporate flexibility into a design so it does increase thrust?"

The team looked at natural propulsors, which have had millions of years to evolve design efficiencies, for guidance with their models. "We found that the way the propulsors moved—the kinematics—seems to be selected for across this wide range of animals, rather than the material properties, such as feathers or scales, being key," Costello says. "Discovering these uniform bending characteristics has reoriented our search for understanding the advantages of flexibility in propulsion."

The paper's lead author, Kelsey N. Lucas, was an undergraduate advisee of co-author Sean Colin of Roger Williams University at the time of the study, and is now a graduate student at Harvard University. Colin is also an MBL visiting scientist and principal investigator with Costello on the Navy's jellyfish robot project.

"Flying and swimming animals have a much lower cost of transport (energy needed to move a mass a given distance) than present manmade designs of similar scale," Costello says. "That is part of our motivation for understanding biological design: Animals do it better."

Explore further: Study on jellyfish energy consumption will improve bio-inspired robotic designs for Navy

More information: Lucas KN, Johnson N, Beaulieu WT, Cathcart E, Tirrell G, Colin SP, Gemmell BJ, Dabiri, JO, Costello JH (2014) Bending rules for animal propulsion. Nature Comm. 5: 3293 DOI: 10.1038/ncomms4293

Colin SP, Costello JH, Dabiri JO, Villanueva A, Blottman JB, Gemmell BJ, Priya S (2012) Biomimetic and Live Medusae Reveal the Mechanistic Advantages of a Flexible Bell Margin. PLOS One DOI: 10.1371/journal.pone.0048909

add to favorites email to friend print save as pdf

Related Stories

Distinctive body type aids long life and predation

Feb 10, 2014

Jellyfish (Cnidarian medusa) have unique body plans that violate a universal law of biology and facilitate their longevity and their propensity to form blooms, according to an international study involving ...

Robojelly gets an upgrade

Nov 22, 2011

Engineers at Virginia Polytechnic Institute and State University (VirginiaTech) have developed a robot that mimics the graceful motions of jellyfish so precisely that it has been named Robojelly. Developed ...

The life cycle of a jellyfish, and a way to control it

Jan 16, 2014

Those free-swimming jellyfish in the sea don't start out in that familiar medusa form, but rather start as sessile and asexual polyps. Now, researchers reporting in the Cell Press journal Current Biology on Jan ...

Swimming jellyfish may influence global climate

Nov 01, 2011

Swimming jellyfish and other marine animals help mix warm and cold water in the oceans and, by increasing the rate at which heat can travel through the ocean, may influence global climate. The controversial idea was first ...

Recommended for you

'Killer sperm' prevents mating between worm species

13 hours ago

The classic definition of a biological species is the ability to breed within its group, and the inability to breed outside it. For instance, breeding a horse and a donkey may result in a live mule offspring, ...

Rare Sri Lankan leopards born in French zoo

16 hours ago

Two rare Sri Lankan leopard cubs have been born in a zoo in northern France, a boost for a sub-species that numbers only about 700 in the wild, the head of the facility said Tuesday.

Researcher reveals how amphibians crossed continents

18 hours ago

There are more than 7,000 known species of amphibians that can be found in nearly every type of ecosystem on six continents. But there have been few attempts to understand exactly when and how frogs, toads, ...

User comments : 0