Improvement in polymers for aviation

February 25, 2014
Improvement in polymers for aviation
This is an electron transmission micrograph of thenanocompositepoly(ether imide)-poly(butylene terephthalate)/carbon nanotubes with 3 percent of nanotubes. Credit: UPV/EHU

We live surrounded by polymers and today, rather than come up with new polymers, there is a tendency to modify them in order to obtain new applications. Carbon nanotubes have excellent mechanical properties, are very tough, very rigid, and what is more, they conduct electricity. "The problem with them is that they get dispersed, in other words, it's very difficult to get them to blend with polymers," explained Iñaki Eguiazabal, a member of the Polymer Technology Group. That is why it is essential to come up with methods that will enablethe carbon nanotubes to have a high degree of dispersion and stabilitywithin the polymer matrix. "In this research we have come up with the successful preparation of one of these materials," he added.

The research aimed to improve the mechanical properties of poly(ether imide). Poly(ether imide) is a polymer that has very good mechanical and thermal properties and is used, among other things, to produce the internal parts of aircraft. However, like most polymers it is an insulating material from the electrical perspective. "By adding carbon nanotubes, we are not only able to improve the mechanical properties of the material even further, we can also turn it into a conductor of electricity," explained IñakiEguiazabal. This could enable them to be used in electrostatic painting applications, among other things.

Right from the start, the activity of the Polymer Technology Group, which is part of the UPV/EHU's Department of Polymer Science and Technology and the Institute for Polymer Materials, POLYMAT, has concentrated mainly on the study of in order to obtain new materials with optimized features.

Right now, the Group's most recent line of work is focussing on the study of nanocomposite systems consisting of thermoplastic polymers and organically modified laminated clays or carbon nanotubes. New nano-reinforced materials based on technical polymers, and in the case of systems with carbon nanotubes, conductors of electricity, have been developed in this line. Ternary systems based on polymer blends to which nanoparticles have been added have enabled the advantages offered by the blendto be combined with those provided by nanocomposites; this includes the obtaining of super-tough materials with an optimized range of properties.

The paper entitled "Widely dispersed PEI-based nanocomposites with multi-wall carbon nanotubes by blending with a masterbatch" has been published recently in the specialised journal Composites, Part A: Applied Science and Manufacturing, one of the most important ones in its category. The authors are PhD-holders Imanol González and IñakiEguiazabal and their paper deals with an application of the above-mentioned synergy between polymer blends and nanocomposites.

Better dispersion and increase in electrical conductivity

For the case of poly(ether imide), they resorted to incorporating a blend based on poly(butylene terephthalate)into the polymer with a high concentration of dispersed nanotubes. In actual fact,"poly(butylene terephthalate)does not have the splendid properties displayed by the we are trying to improve, but both polymers blend very well and that way we can get the dispersion to extend right across the blend," Eguiazabal pointed out.

"Although thermal stability is reduced, is obtained by adding 1% of nanotubes," he added. On the other hand, "the of the poly(ether imide) improve it even more. "Finally, to all this is added the fact that the viscosity of the nanocomposites is seen to be significantly reduced thanks to the presence of the poly(butylene terephthalate), which constitutes a considerable improvement in the processability of the materials, despite the presence of the nanotubes that tend to increase viscosity. This reduction in viscosity makes it possible to obtain products with sections of very little thickness but with complex geometry.

Explore further: Engineers develop rapid, uniform dispersion method for carbon nanotubes in solutions and solids

More information: I. González, J.I. Eguiazabal. WidelydispersedPEI-basednanocompositeswithmulti-wallcarbonnanotubesbyblendingwith a masterbatch. Composites Part A: Applied Science and Manufacturing. www.sciencedirect.com/science/article/pii/S1359835X13001711

Related Stories

Nano-structured polymer-based materials from scrap

May 25, 2012

EU researchers developed polymer blends and processing techniques facilitating recovery of scrap from industrial processes. Advances in this area have the potential to decrease costs and waste while protecting the environment.

The new superstrong

July 11, 2013

In today's market for high performance fibers, used for applications such as bulletproof vests, manufacturers have only four options: Kevlar, Spectra, Dyneema, and Zylon. Made from polymers such as polyethylene, these were ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.