Physicists reveal novel magnetoelectric effect

February 12, 2014 by Chris Branam

(Phys.org) —New research at the University of Arkansas reveals a novel magnetoelectric effect that makes it possible to control magnetism with an electric field.

The novel mechanism may provide a new route for using multiferroic materials for the application of RAM (random access memories) in computers and other devices, such as printers.

An international research team, led by U of A physicists, reported its findings in an article titled, "Prediction of a Novel Magnetoelectric Switching Mechanism in Multiferroics," on Feb. 5 in the journal Physical Review Letters.

The researchers studied a new predicted state of the multiferroic bismuth ferrite, a compound that can change its electrical polarization when under a magnetic field or magnetic properties when under an electric field. Because of these effects, bismuth ferrite interests researchers who want to design novel devices—based on magnetoelectric conversion.

The "coupling mechanism" in between magnetic order and electrical polarization order is required for this phenomenon to be clearly understood, said Yurong Yang, a research assistant professor of physics in the J. William Fulbright College of Arts and Sciences.

"We discovered an unknown magnetoelectric switching mechanism," Yang said. "In this , the magnetic order and are not coupled directly, they are coupled with oxygen octahedral tilting, respectively. The switching polarization by electric field leads to the change of the sense of the rotation of oxygen octahedral, which in turn induces the switching of the .

"These two couplings are governed by an interaction between three different physical quantities, called 'tri-linear coupling,' he said. "In contrast with the trilinear-coupling effects in the literature, the new coupling involves a large polarization and thus can be easily tuned by an ."

Yang performed calculations with the assistance of the Arkansas High Performing Computing Center at the University of Arkansas. He was joined in the study by Laurent Bellaiche, a Distinguished Professor of physics at the U of A. Bellaiche and Yang conducted their research in the university's Institute for Nanoscience and Engineering.

Explore further: Multiferroics could lead to low-power devices

More information: Yurong Yang, Jorge Íñiguez, Ai-Jie Mao, and L. Bellaiche. "Prediction of a Novel Magnetoelectric Switching Mechanism in Multiferroics." Phys. Rev. Lett. 112, 057202 (2014) [5 pages] DOI: 10.1103/PhysRevLett.112.057202

Related Stories

Multiferroics could lead to low-power devices

May 17, 2011

(PhysOrg.com) -- Magnetic materials in which the north and south poles can be reversed with an electric field may be ideal candidates for low-power electronic devices, such as those used for ultra-high data storage. But finding ...

Physicists discover 'magnetotoroidic effect'

September 26, 2011

(PhysOrg.com) -- For many years, scientists have known about the magnetoelectric effect, in which an electric field can induce and control a magnetic field, and vice versa. In this effect, the electric field has always been ...

Recommended for you

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

arom
1 / 5 (1) Feb 12, 2014
"We discovered an unknown magnetoelectric switching mechanism," Yang said. "In this mechanism, the magnetic order and electrical polarization are not coupled directly, they are coupled with oxygen octahedral tilting, respectively. The switching polarization by electric field leads to the change of the sense of the rotation of oxygen octahedral, which in turn induces the switching of the magnetic order.

Unfortunately up to now we still do not know, in the conventional way, what the electric and magnetic field are! Maybe understanding them (like something as below) could help to the discussing matter.
http://www.vacuum...21〈=en

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.