Physicists discover 'quantum droplet' in semiconductor

February 26, 2014
This is an artist's conception of the microscopic "quantum droplet" discovered by JILA physicists in a gallium-arsenide semiconductor excited by an ultra-fast red laser pulse. Each droplet consists of electrons and holes (representing absent electrons) arranged in a liquid-like pattern of rings. The surrounding area is plasma. The discovery adds to understanding of how electrons interact in optoelectronic devices. Credit: Baxley/JILA

JILA physicists used an ultrafast laser and help from German theorists to discover a new semiconductor quasiparticle—a handful of smaller particles that briefly condense into a liquid-like droplet.

Quasiparticles are composites of smaller particles that can be created inside solid materials and act together in a predictable way. A simple example is the exciton, a pairing, due to electrostatic forces, of an electron and a so-called "hole," a place in the material's energy structure where an electron could be, but isn't.

The new quasiparticle, described in the Feb. 27, 2014, issue of Nature* and featured on the journal's cover, is a microscopic complex of electrons and holes in a new, unpaired arrangement. The researchers call this a "quantum droplet" because it has quantum characteristics such as well-ordered energy levels, but also has some of the characteristics of a liquid. It can have ripples, for example. It differs from a familiar liquid like water because the quantum droplet has a finite size, beyond which the association between electrons and holes disappears.

Although its lifetime is only a fleeting 25 picoseconds (trillionths of a second), thequantum droplet is stable enough for research on how light interacts with specialized forms of matter.

"Electron-hole are known in semiconductors, but they usually contain thousands to millions of electrons and holes," says JILA physicist Steven Cundiff, who studies the properties of cutting-edge lasers and what they reveal about matter. "Here we are talking about droplets with around five electrons and five holes.

"Regarding practical benefits, nobody is going to build a quantum droplet widget. But this does have indirect benefits in terms of improving our understanding of how electrons interact in various situations, including in optoelectronic devices."

The JILA team created the new quasiparticle by exciting a gallium-arsenide semiconductor with an ultrafast red laser emitting about 100 million pulses per second. The pulses initially form excitons, which are known to travel around in semiconductors. As laser pulse intensity increases, more electron-hole pairs are created, with quantum droplets developing when the exciton density reaches a certain level. At that point, the pairing disappears and a few electrons take up positions relative to a given hole. The negatively charged and positively charged holes create a neutral droplet. The droplets are like bubbles held together briefly by pressure from the surrounding plasma.

JILA's experimental data on of individual droplet rings agreed with theoretical calculations by co-authors at the University of Marburg in Germany. JILA researchers found they could tap into each energy level by tailoring the quantum properties of the laser pulses to match the particle correlations within the droplets. The droplets seem stable enough for future systematic studies on interactions between light and highly correlated states of matter. In addition, quasiparticles, in general, can have exotic properties not found in their constituent parts, and thus, can play a role in controlling the behavior of larger systems and devices.

Explore further: Physicists discover atomic clock can simulate quantum magnetism

More information: Nature. Feb. 27, 2014.

Related Stories

Exotic quantum crystal discovered

August 10, 2011

Nature knows two opposite types of solids: one that emerges upon compression from a liquid and a second that appears if the pressure on a liquid is reduced. While the former is typical for substances in our everyday life ...

Recommended for you

Uncovering the secrets of water and ice as materials

December 7, 2016

Water is vital to life on Earth and its importance simply can't be overstated—it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains ...

Blocks of ice demonstrate levitated and directed motion

December 7, 2016

Resembling the Leidenfrost effect seen in rapidly boiling water droplets, a disk of ice becomes highly mobile due to a levitating layer of water between it and the smooth surface on which it rests and melts. The otherwise ...

The case for co-decaying dark matter

December 5, 2016

(Phys.org)—There isn't as much dark matter around today as there used to be. According to one of the most popular models of dark matter, the universe contained much more dark matter early on when the temperature was hotter. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.