Patent approved for cancer-fighting process

Feb 13, 2014 by Patty Pitts

A new process developed at the University of Victoria that will help oncologists better identify and target cancerous tumours has been granted a US patent. The patented technology involves synthesizing lanthanide (rare earth metal) for use with MRIs to increase the image contrast between a malignant tumour and surrounding tissue for more accurate and effective diagnosis and surgery.

"The patent gets companies interested in supporting further research," says UVic chemistry professor Dr. Frank van Veggel. "You want to cover the US because the potential market is so big and there's a greater potential to access venture capital."

A Canadian patent application is currently being reviewed by the Canadian Intellectual Property Office and a patent is expected to be issued in the near future.
van Veggel and his team work with , very tiny matter more than 10 times smaller than a speck of dust. Using their patented process they synthesize nanoparticles made of the lanthanides sodium and fluoride, and then transfer those nanoparticles to water. Lanthanides, which are available in small amounts throughout the world, are a family of 14 elements with unique optical and magnetic properties.

"Following injection prior to an MRI, the nanoparticles will not only inform a surgeon as to the location of a tumour but also provide a better image of its shape, which helps surgeons determine how much surrounding tissue needs to be removed," says van Veggel. "We hope to make the material so potent that we will be able to find very small tumours."
van Veggel thinks the new process might even eliminate the need for biopsies in some cases. "With a lot of work we can produce antibodies or biomarkers particular to specific forms of cancer and connect them to our nanoparticles. When they localize on a , they both confirm a malignancy and provide additional information about the cancer in question to the oncologist."

Using one of UVic's advanced electron microscopes, van Veggel and his team need about a week to synthesize a vial of lathanide nanoparticles, which is then sent to a collaborator at the University of Calgary for further tests involving MRI technology. van Veggel thinks it will be about 10 years before human applications are possible but he is optimistic about the potential for the new process.

"In diseases such as prostate cancer there are a lot of unnecessary interventions," he says. "Once this process is ready for human use we'll be able to differentiate between smaller, less aggressive tumours but also find small metastasized ones."

Explore further: A new nanomaterial offers hope for better detection and treatment of breast cancer

add to favorites email to friend print save as pdf

Related Stories

Swarms of robots could fight cancer (with your help)

Oct 02, 2013

Cancer researchers are not shy of using nanotechnology. Their work is making promising headway into developing safer and more effective treatments. And now, new developments in the area mean that the general ...

'Tumour-on-a-chip' technology offers new direction

Nov 07, 2013

A two-year collaboration between the Chan and the Rocheleau labs at the Institute of Biomaterials & Biomedical Engineering (IBBME) has led to the development of a new microfluidics screening platform that can accurately predict ...

Recommended for you

Graphene surfaces on photonic racetracks

23 hours ago

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0