Optical nanocavity to boost light absorption in semiconductors

Feb 26, 2014 by Cory Nealon
Optical nanocavity to boost light absorption in semiconductors
A rendering shows a beam of light interacting with an optical nanocavity. The nanocavity boosts light absorption in ultrathin semiconductors. Credit: Advanced Materials

Associated with unhappy visits to the dentist, "cavity" means something else in the branch of physics known as optics.

Put simply, an optical cavity is an arrangement of mirrors that allows beams of to circulate in closed paths. These cavities help us build things like lasers and optical fibers used for communications.

Now, an international research team pushed the concept further by developing an optical "nanocavity" that boosts the amount of light that ultrathin semiconductors absorb. The advancement could lead to, among other things, more powerful photovoltaic cells and faster video cameras; it also could be useful for splitting water using energy from light, which could aid in the development of .

The team, comprised of faculty and students from the University at Buffalo and two Chinese universities, presented its findings Feb. 24 in the journal Advanced Materials.

"We're just scratching the surface, but the preliminary work that we've done is very promising," said Qiaoqiang Gan, PhD, lead author and UB assistant professor of electrical engineering. "This advancement could lead to major breakthroughs in energy-harvesting and conversion, security and other areas that will benefit humankind."

Semiconductors form the basis of modern electronics. They work by manipulating the flow of energy in . The most common semiconductor material, silicon, is used to make microchips for cellular phones, computers and other electronic devices.

Industry has kept pace with the demand for smaller, thinner and more powerful optoelectronic devices, in part, by shrinking the size of the semiconductors used in these devices.

The problem, however, is that these ultrathin semiconductors do not absorb light as well as conventional bulk semiconductors. Therefore, there is an intrinsic tradeoff between the ultrathin semiconductors' optical absorption capacity and their ability to generate electricity.

As a result, researchers worldwide are trying to find ways to boost the amount of light that ultrathin can absorb. Harvard University researchers recently had varying degrees of success by combining thin films of germanium, another common semiconductor, on a gold surface.

"While the results are impressive, gold is among the most expensive metals," said Suhua Jiang, associate professor of materials science at Fudan University in China. "We illustrated a nanocavity, made with aluminum or other whitish metals and alloys that are far less expensive, can be used to increase the amount of light that semiconducting materials absorb."

The nanocavity consists of, from bottom to top: aluminum, aluminum oxide and germanium. In the experiment, light passed through the germanium, which is 1.5 to 3 nanometers thick, and circulated in a closed path through the aluminum oxide and aluminum.

The absorption rate peaked at 90 percent, with germanium absorbing roughly 80 percent of the blue-green light and aluminum absorbing the rest. This is ideal, said Haomin Song, PhD candidate in electrical engineering at UB and the paper's first author, because the bulk of the light stays within the semiconducting material.

"The nanocavity has many potential applications. For example, it could help boost the amount of light that solar cells are able to harvest; it could be implanted on camera sensors, such as those used for security purposes that require a high-speed response. It also has properties that could be useful for photocatalytic water splitting, which could help make hydrogen fuel a reality," Song said.

Before any of that happens, however, more research must be done, especially as it relates to how the semiconductor would turn the light into power as opposed to heat.

Gan's research group is collaborating with Alexander Cartwright, PhD, UB professor of and vice president for research and economic development, and Mark Swihart, PhD, UB professor of chemical and biological engineering, to develop ultrathin energy-harvesting devices.

Gan is also working with Hao Zeng, PhD, UB associate professor of physics, to study its effect on photocatalysis.

Explore further: Solar panels as inexpensive as paint? It's possible due to new research

More information: Song, H., Guo, L., Liu, Z., Liu, K., Zeng, X., Ji, D., Zhang, N., Hu, H., Jiang, S. and Gan, Q. (2014), "Nanocavity Enhancement for Ultra-Thin Film Optical Absorber." Adv. Mater. DOI: 10.1002/adma.201305793

add to favorites email to friend print save as pdf

Related Stories

Forget about leprechauns, engineers are catching rainbows

Feb 15, 2013

(Phys.org)—University at Buffalo engineers have created a more efficient way to catch rainbows, an advancement in photonics that could lead to technological breakthroughs in solar energy, stealth technology ...

A new chapter of solar energy conversion and storage?

Nov 13, 2012

(Phys.org)—Using the power of the sun and ultrathin films of iron oxide (commonly known as rust), Technion-Israel Institute of Technology researchers have found a novel way to split water molecules into ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...