Nitrogen-tracking tools for better crops and less pollution

February 18, 2014
The NiTrac sensor developed by Cheng Hsun Ho and Wolf Frommer of the Carnegie Institution for Science will enable non-invasive real-time monitoring of nitrogen acquisition in action in plant roots, providing a new tool set that can be used to improve nitrogen efficiency. The novel sensor technology is widely applicable and useful also for cancer and neurobiology. Credit: Cheng Hsun Ho and Wolf Frommer

As every gardner knows, nitrogen is crucial for a plant's growth. But nitrogen absorption is inefficient. This means that on the scale of food crops, adding significant levels of nitrogen to the soil through fertilizer presents a number of problems, particularly river and groundwater pollution. As a result, finding a way to improve nitrogen uptake in agricultural products could improve yields and decrease risks to environmental and human health.

Nitrogen is primarily taken up from the soil by the roots and assimilated by the plant to become part of DNA, proteins, and many other compounds. Uptake is controlled by a number of factors, including availability, demand, and the plant's energy status. But there is much about the transport proteins involved in the process that isn't understood. New work from Carnegie's Cheng-Hsun Ho and Wolf Frommer developed tools that could help scientists observe the nitrogen-uptake process in real time and could lead to developments that improve agriculture and the environment. It will be published by eLife on March 11 and is already available online.

Frommer had previously developed technology to spy on activity by using fluorescent tags in a cell's DNA to monitor the structural rearrangements that a transporter undergoes as it moves its target molecule. They tailored this technology to five nitrogen transport targets to monitor the nitrogen uptake and assimilation process. "We engineered these sensors to monitor the activity and regulation of suspected nitrogen transporters in living , which otherwise are impossible to study," Frommer said. "This suite of tools will vastly improve our understanding of the nitrogen-uptake process and will help to develop increased and decrease fertilizer-caused pollution."

Their method is applicable to any transporter from any organism, thereby enabling the otherwise exceptionally difficult analysis of transport processes in the tissues of plants and animals.

Explore further: A genetic alternative to fertilizer

Related Stories

A genetic alternative to fertilizer

June 1, 2012

Several studies have shown that a lack of nitrogen in soils adversely affects crop yields. The modern use of nitrogen fertilizers has improved yields to meet expanding global food demand, but in some cases up to 50% of the ...

Nitrogen key to uptake of other corn nutrients, study shows

April 17, 2013

(Phys.org) —A historical analysis of corn research shows that new hybrids are taking up more nitrogen than older plant varieties after the crucial flowering stage, a clue as to how plant scientists will need to adapt plants ...

Breakthrough: Sensors monitor cells at work

July 2, 2013

Transport proteins are responsible for moving materials such as nutrients and metabolic products through a cell's outer membrane, which seals and protects all living cells, to the cell's interior. These transported molecules ...

Nitrogen management studied in greenhouse pepper production

January 31, 2014

As consumer demand for year-round fresh produce increases, vegetable and fruit producers are facing significant environmental and sustainability issues, and are being challenged to examine traditional production practices ...

Recommended for you

Ice sheets may be more resilient than thought

September 3, 2015

Sea level rise poses one of the biggest threats to human systems in a globally warming world, potentially causing trillions of dollars' worth of damages to flooded cities around the world. As surface temperatures rise, ice ...

Clues from ancient Maya reveal lasting impact on environment

September 3, 2015

Evidence from the tropical lowlands of Central America reveals how Maya activity more than 2,000 years ago not only contributed to the decline of their environment but continues to influence today's environmental conditions, ...

Climate ups odds of 'grey swan' superstorms

August 31, 2015

Climate change will boost the odds up to 14-fold for extremely rare, hard-to-predict tropical cyclones for parts of Australia, the United States and Dubai by 2100, researchers said Monday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.