Nickel-foam-supported carbon-nanotube electrode offers improved performance for lightweight lithium batteries

Feb 26, 2014
Nickel-foam-supported carbon-nanotube electrode offers improved performance for lightweight lithium batteries
A nanotechnology-based electrode that resists deformation and electric polarization may one day boost the driving range of electric and hybrid vehicles. Credit: omada/iStock/Thinkstock

Lithium–oxygen batteries are innovative devices that generate power from atmospheric oxygen trapped inside porous, carbon-based electrodes. These batteries are significantly lighter than traditional lithium-ion batteries, and thus have the potential to extend the driving range of electric and hybrid vehicles. However, many practical challenges remain for lithium–oxygen batteries, most notable of which is the buildup of insoluble lithium peroxide by-products in the carbon electrode, which can cause the battery to cease operation after only a few charge cycles.

Now, Zhaolin Liu from the A*STAR Institute of Materials Research and Engineering in Singapore, in collaboration with Aishui Yu and co-workers from Fudan University in China, has developed a carbon nanotube that can alleviate recharging problems in lithium–oxygen batteries, thanks to a support made from three-dimensional nickel foam1.

In previous efforts to improve the performance of lithium–oxygen batteries, researchers investigated numerous types of permeable carbon electrodes—including high-surface-area charcoal, graphene and porous aerogels. Such approaches, however, rely on glue-like binders to hold the carbon particles together. These binders decrease oxygen diffusion rates through the electrode and can degrade and clog pore spaces.

Liu and co-workers set out to design a binder-free electrode by turning to nickel foam, an inexpensive substance with a porous three-dimensional structure that makes it both rigid and lightweight. To ensure the foam's compatibility with lithium–oxygen batteries, the team grew carbon nanotubes doped with small amounts of nitrogen directly on its surface. Nitrogen-doped carbon-nanotube electrodes have been shown to possess catalytic activity that boosts battery lifetimes, and the team anticipated that they could create improved devices by supporting these nanomaterials with nickel foam.

Using chemical vapor deposition, the researchers were able to cover the nickel foam with layers of doped nanotubes arranged in typical bamboo-like structures. These nanotubes were loosely packed and contributed to a network of large, interconnected tunnels throughout the foam. According to Liu, these tunnels facilitate oxygen diffusion and provide critical voids where can be deposited without limiting battery performance.

When they measured the performance of their binder-free electrode, the team found that it could deliver twice the electrical capacity of a pure-nitrogen-doped electrode. Liu notes that the strong electrical contact between the nanotubes and the nickel support suppresses volume expansion and limits the polarization effects that hinder recharging. "The next step will be to apply these electrodes in real lithium–oxygen batteries," he says.

Explore further: A nanoscale glimpse of batteries in action

More information: Lin, X., Lu, X., Huang, T., Liu, Z. & Yu, A. "Binder-free nitrogen-doped carbon nanotubes electrodes for lithium-oxygen batteries." Journal of Power Sources 242, 855–859 (2013). DOI: 10.1016/j.jpowsour.2013.05.100

add to favorites email to friend print save as pdf

Related Stories

A nanoscale glimpse of batteries in action

Sep 13, 2013

Lithium–oxygen (Li–O2) batteries are a new type of experimental battery that electric car manufacturers are hoping will address the issue of limited driving range. Unlike the lithium-ion batteries used ...

Inexpensive material boosts battery capacity

Oct 23, 2013

Battery-powered cars offer many environmental benefits, but a car with a full tank of gasoline can travel further. By improving the energy capacity of lithium-ion batteries, a new electrode made from iron ...

Progress made in building rechargeable lithium-air battery

Jul 20, 2012

(Phys.org) -- Researchers in the United Kingdom have taken another step towards proving that so named lithium-air (Li-O2) batteries might one day become practical. Up to now the problem has been using the technology to build a ...

Battery development may extend range of electric cars

Jan 09, 2014

It's known that electric vehicles could travel longer distances before needing to charge and more renewable energy could be saved for a rainy day if lithium-sulfur batteries can just overcome a few technical ...

Recommended for you

A new way to make microstructured surfaces

22 minutes ago

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Tough foam from tiny sheets

19 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

User comments : 0