Nanomolecular binding agents potentially remove anti-coagulant heparin

Feb 11, 2014

A University of York scientist's experience in seeing his partner in hospital recovering from a double lung transplant prompted him to design and synthesise new chemical agents that could revolutionise post-operative patient care.

Professor Dave Smith, of the University's Department of Chemistry, led an international team which developed the agents that bind and potentially remove the anti-coagulant .

Professor Smith says: 'I was sitting at my husband Sam's bedside while he recovered from a double lung transplant when the idea first came to me. I spent a long time talking to surgeons about all the drugs they used, and some of the problems they caused, and as I sat there, looking at all the tubes, I realised that perhaps my research team could help."

One of the drugs used during major surgery is heparin which helps to prevent the blood from clotting. Once the patient is in recovery, however, the surgeons want clotting to resume to aid the healing process. To do this they use a 'heparin rescue agent', called protamine, to remove heparin from the patient's bloodstream. But in some cases, this can cause side effects such as patients going into . As a result, doctors must use protamine cautiously, which can lead to inefficient clotting.

"I realised that my research group had developed expertise which could lead to chemical agents to bind, and perhaps remove the heparin. These chemical agents can be carefully designed to minimise side effects and so improve patient care," Professor Smith says.

He designs small drug-like molecules, which assemble spontaneously into larger nanostructures in order to bind the heparin using multivalent (many-bonds) interactions. In the latest research, published in Chemical Science, Professor Smith and his team, which includes researchers from University of Liverpool, University of Trieste, and Freie Universität Berlin demonstrate that this approach works in vitro in human plasma, reversing the effect of heparin and allowing clotting to begin.

Importantly, the system is biodegradable unless bound to heparin, with the molecules slowly breaking down, leading to nanostructure disassembly and inactivation. This means that, in principle, plenty of this compound could be used, because any excess will be less likely to cause side effects.

Professor Smith adds: "This could revolutionise the way in which surgeons reverse the effects of heparin once surgery is complete. I call this 'self-assembled multivalent' approach to medicine as 'SAMul' nanomedicine – in honour of Sam who gave me the initial inspiration."

The next stages of the research will involve further optimisation of the agents to maximise their binding and further minimise their toxicity prior to in vivo testing and eventual clinical trials.

Explore further: New approach prevents thrombosis without increasing the risk of bleeding

More information: "Nanoscale self-assembled multivalent (SAMul) heparin binders in highly competitive, biologically relevant, aqueous media." Stephen M. Bromfield, Paola Posocco, Ching W. Chan, Marcelo Calderon, et al. Chem. Sci., 2014, Advance Article. DOI: 10.1039/C4SC00298A

add to favorites email to friend print save as pdf

Related Stories

US issues guidelines to avoid heparin contamination

Feb 10, 2012

Four years after US drug-maker Baxter International's blood thinner heparin was contaminated in China, causing dozens of deaths, US regulators on Friday issued draft guidelines for safe production.

FDA to test all heparin at U.S. border

Mar 16, 2008

The U.S. Food and Drug Administration has issued an import alert and plans to test all shipments of the drug heparin before they enter the country.

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...