Molecular collisions now imaged better than ever

February 12, 2014 by Bas Van De Meerakker
Molecular collisions now imaged better than ever
Figure 1. Visualisation of the collisions between NO and helium (left) and NO and neon (right). The top images show the research results of Van de Meerakker and his colleagues; the bottom images show the visualised theoretical predictions of the collisions. Red indicates a high probability of change of direction; blue indicates a low probability. The small peaks show the diffraction oscillations. Credit: Nature Chemistry

Molecular physicists from Radboud University Nijmegen have produced images of the changes in direction of colliding nitrogen monoxide molecules (NO) with unprecedented sharpness. By combining a Stark decelerator with advanced imaging techniques, they were able to obtain very high resolution images of the collision processes. The results were published in Nature Chemistry on 9 February.

The project supervisor, Bas van de Meerakker, was also the first to achieve controlled collisions between two and produced images of resonances during his stay as visiting professor in Bordeaux. While carrying out this research, Van de Meerakker and his colleagues detected diffraction oscillations - fluctuations in the angular distribution of the molecules - following a collision. These diffraction oscillations provide a unique image of the collision process. 'The changes in direction and, in particular, the oscillation structure that we observed, have long been predicted in theory. Even though we had hoped to be able to visualise this theory in using our decelerator, the fact that we actually achieved it is really quite something,' said Van de Meerakker (see Figure 1).

Ultimate demonstration of wave nature

'Diffraction oscillations are the ultimate demonstration of the wave nature of molecules and the collision process itself', said Van de Meerakker. 'For example, the diffraction of light is a well-known phenomenon that results from interference between light waves. Just like light, are in fact waves, and can therefore reinforce or cancel out one another as they collide. This results in the oscillation structure that we saw. These data provide us with even more detailed information about the interaction between molecules and, ultimately, help us learn more about nature.'

The publication of their article in Nature Chemistry means that the molecular physicists are yet another step closer to the ultimate molecular collision experiment, in which all variables are controlled. Van de Meerakker's next step will therefore be to use not one but two Stark decelerators to control both beams of colliding molecules.

Explore further: Single molecules in a quantum movie

More information: State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar. Alexander von Zastrow, Jolijn Onvlee, Sjoerd N. Vogels, Gerrit C. Groenenboom, Ad van der Avoird, Sebastiaan Y. T. van de Meerakker. Nature Chemistry (2014) Received 25 September 2013 Accepted 20 December 2013 Published online 09 February 2014. DOI: 10.1038/nchem.1860

Related Stories

Single molecules in a quantum movie

March 25, 2012

The quantum physics of massive particles has intrigued physicists for more than 80 years, since it predicts that even complex particles can exhibit wave-like behaviour – in conflict with our everyday ideas of what is ...

Collisions of coronal mass ejections can be super-elastic

May 22, 2013

Coronal mass ejections (CMEs), emissions of magnetized ionized gas from the Sun, can damage satellites and communication technology, so being able to predict where they are heading and how much energy they have is important ...

Towards perfect control of light waves

January 13, 2014

(Phys.org) —A team at the Laboratory for Attosecond Physics (LAP) in Garching (Germany) has constructed a detector, which provides a detailed picture of the waveforms of femtosecond laser pulses. Knowledge of the exact ...

First plastic cell with working organelle

January 15, 2014

For the first time, chemists have successfully produced an artificial cell containing organelles capable of carrying out the various steps of a chemical reaction. This was done at the Institute for Molecules and Materials ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.