Marine sponge forms a glass filament with a perfect periodic arrangement of nanopores

February 24, 2014 by Katja Schulze
A segment of approximately one-centimetre-thick glass rod that is used by Monorhaphis chuni to attach itself to the ocean’s floor. The inner structure of the filament, passing through the centre of this giant glass rod, resembles the structure of synthetic mesoporous materials. However, the microstructure of this naturally occurring material is more regular than the synthetic counterparts. Credit: Igor Zlotnikov / MPI of Colloids and Interfaces

Materials made by man and those made by biological organisms often deal with similar synthesis challenges – occasionally converging on an analogous solution independently. One example is the giant glass rod that is used by the sea sponge M. chuni to anchor itself in marine environments. A collaborative effort by researchers from the Max Planck Institutes of Colloids and Interfaces and of Microstructure Physics has now uncovered and analysed the nanostructure of the filament passing through the centre of this giant glass rod.

The researchers discovered that it is structured almost exactly like the nanoporous man-made nanomaterials, which are relevant for many applications in fields such as biomedicine, sensor technology and chemical catalysis. M. Chuni forms the glass around regularly arranged proteins, called silicateins, measuring approximately five nanometres in size. This creates a structure resembling stacks of eggs in cartons, where the eggs correspond to the protein molecules, while the cartons represent the glass. Artificial glass nanoporous structures are produced around droplets of fats or complex polymers. However, the size and the spatial arrangement of the pores in materials produced in this way are not as uniform as of the protein-filled cavities in the glass filament of M. chuni.

The amount of surface area often plays an important role in materials used in medicine and technology and normally, it should be as large as possible. It can accommodate, for instance, large quantities of pharmaceutical agents and release them gradually in the body. In chemistry, the efficiency of numerous processes is dependent on catalysts exhibiting a large surface on which reactions can occur. In sensors, for example, the sensitivity is strongly dependent on the amount of surface to which the detected molecules can attach. Porous structures are a good example for such materials.

Materials having pores measuring between 2 to 50 nanometres are particularly well suited for such purposes. Scientists refer to these as mesoporous structures, to distinguish them from structures that are microporous, having smaller pores, or macroporous, with larger pores. Recently, Igor Zlotnikov and Peter Fratzl, who study biomaterials at the Max Planck Institute of Colloids and Interfaces in collaboration with the team of Peter Werner from the Max Planck Institute of Microstructure Physics, Emil Zolotoyabko from the Israeli Institute of Technology and Yannicke Dauphin from the Université P. & M. Curie, have discovered a mesoporous material in nature, namely in the glass sponge Monorhaphis chuni. The sponge lives on the bottom of the Indian and Pacific Oceans, and forms an approximately one-centimetre-thick glass rod to attach itself to the ocean's floor. Over the course of its life, the rod can grow up to three meters in length. The glass filament, passing through the centre of this rod, is perforated with pores having a diameter of about five nanometres. Each pore is occupied by an egg-shaped protein molecule, called silicatein, connected to the protein molecules in adjacent pores through holes in the glass.

The glass sponge sets standards for the regularity in size and arrangement of pores

Pore distribution in the glass filament resembles stacked, pallet-like egg cartons. Each cavity is occupied by one protein molecule, called silicatein, measuring approximately five nanometres in size. Credit: Igor Zlotnikov / MPI of Colloids and Interfaces

"Mesoporous glass structures are among the most studied materials. This makes it even more exiting to find them in nature," says Igor Zlotnikov. "Presumably, this structure is not limited to M. chuni, but can also occur in other glass sponges." However, not only does M. chuni produces a mesoporous material that is technologically relevant; the sponge sets standards in terms of size distribution and arrangement of the pores. In the sample that Igor Zlotnikov and his colleagues studied, all pores have the size of the inhabiting protein molecule and they are completely regularly arranged. Metaphorically speaking, the structure resembles egg cartons that are stacked one on top of another like pallets.

The researchers used two characterization techniques to gain an accurate picture of the internal architecture of the filament. First, they employed X-ray analysis at the BESSY II synchrotron facility in Berlin. Experiments with X-ray diffraction usually serve to identify the atomic periodic structure of crystals. However, Igor Zlotnikov's team used a variant of this technology to reveal structural periodicity on a larger scale, namely, on the scale of the pores size and their spatial arrangement. The results were confirmed in cooperation with the team working with Peter Werner from the Max Planck Institute of Microstructure Physics using high resolution transmission electron microscopy. In addition to structural details, this technique allows researchers to make assertions about local chemical composition.

But what surprised the researchers even more than the periodicity of the structure that was revealed is the way in which M. chuni produces it: "It's absolutely astonishing that nature and mankind converged on a similar manufacturing method independently", says Peter Fratzl, Director at the Max Planck Institute of Colloids and Interfaces. To continue with the image of the egg cartons, the glass sponge first stacks one or maybe even several layers of eggs – that is, protein molecules – and then fills the gaps with cardboard, or in this case glass.

Pore size varies in synthetic mesoporous materials

An image from a transmission electron microscope (TEM/EDX), which allows mapping of the chemical composition of the structure, shows periodic structure of silicatein molecules (yellow) and glass (blue) inside the filament. Credit: Peter Werner/MPI of Microstructure Physics; Andreas Graff/Fraunhofer Institute for Mechanics of Materials IWM

Since the protein molecules, which serve as a kind of a model for the surrounding glass structure, are all in the same size, the pores in the obtained material also have the same diameter and form a completely uniform structure. Achieving this precision via synthetic methods is difficult, even though the mesoporous glass is created in a very similar manner. Here, organic droplets around which the glass is produced determine the pore shape. Subsequently, the droplets are dissolved out of the nanostructure using a detergent – in principle, nothing other than a dishwashing liquid. However, scientists can't adjust the size of the droplets as precisely as the biochemical apparatus of a living organism that controls the size of the proteins. Thus, the pore size in synthetic mesoporous materials varies, and the cavities don't arrange themselves into a perfectly regular pattern.

"With silicatein or other proteins, it would be possible to produce mesoporous materials having a completely uniform pore size and a perfectly periodic arrangement", says Igor Zlotnikov. "That would be very expensive." Mimicking regularly structured materials similar to those found in M. chuni, for the time being, is not the goal of Max Planck researchers. They are currently investigating whether the mesoporous structure is as uniform over large regions of the glass filament as it is in the 100 micrometer section they analysed for the current publication. "Besides that, we focus on the relationship between the structure and the mechanical properties of the entire glass rod", says Peter Fratzl. Also there, M. chuni sets standards in terms of structural optimization to enhance its mechanical behaviour.

Explore further: First tri-continuous mesoporous Silica complex structure developed in Singapore

More information: Zlotnikov, I., Werner, P., Blumtritt, H., Graff, A., Dauphin, Y., Zolotoyabko, E. and Fratzl, P. (2013)," A Perfectly Periodic Three-Dimensional Protein/Silica Mesoporous Structure Produced by an Organism." Adv. Mater. DOI: 10.1002/adma.201304696

Related Stories

Glass sponge as a living climate archive

April 5, 2012

( -- Climate scientists have discovered a new archive of historical sea temperatures. With the help of the skeleton of a sponge that belongs to the Monorhaphis chuni species and that lived in the East China Sea ...

Plastic crystals open up possibilities for novel materials

January 21, 2014

( —Researchers of the Dutch FOM Foundation have discovered that plastic crystals, which constitute a special type of matter, can be made with the help of rod-shaped particles. The crystals could be used, for example, ...

Swiss cheese crystal, or high-tech sponge?

January 27, 2014

The sponges of the future will do more than clean house. Picture this, for example: Doctors use a tiny sponge to soak up a drug and deliver it directly to a tumor. Chemists at a manufacturing plant use another to trap and ...

New method to create monomodal, mesoporous metal oxides

February 21, 2014

A team of UConn chemists has discovered a new way of making a class of porous materials that allows for greater manufacturing controls and has significantly broader applications than the longtime industry standard.

Recommended for you

Electrons at the speed limit

August 26, 2016

Electronic components have become faster and faster over the years, thus making powerful computers and other technologies possible. Researchers at ETH Zurich have now investigated how fast electrons can ultimately be controlled ...

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.