Marine algae can sense the rainbow

Feb 24, 2014

A new study published in Proceedings of the National Academy of Sciences has shown for the first time that several types of aquatic algae can detect orange, green and blue light.

Land plants have receptors to detect light on the red and far red of the spectrum, which are the common wavelengths in the air. These plants sense the light to move and grow as their environment changes, for example when another plant shades them from the sun. But in the ocean, the water absorbs red wavelengths, instead reflecting colours such as blue and green. As part of the study, a team of researchers including Canadian Institute for Advanced Research (CIFAR) Senior Fellow Alexandra Worden sequenced about 20 different marine and found they were capable of detecting not only red light, but also many other colours. Collaborators in the lab of J. Clark Lagarias performed the biochemical analyses that established the wavelength detection.

"It's an amazing innovation of these algae to sense the whole rainbow," says Dr. Worden, who leads a microbial ecology research group at Monterey Bay Aquarium Research Institute in California. She is a member of CIFAR's Integrated Microbial Biodiversity program, which uses interdisciplinary research to study how a diversity of microbial life shapes all ecosystems. Her lab selected and grew the algae for sequencing in a collaborative effort with CIFAR Fellow Adrián Reyes-Prieto, who she first met at the Institute's program meetings. They specifically targeted diverse but largely unstudied organisms that might reveal new evolutionary insights into photosynthetic organisms. The Gordon and Betty Moore Foundation accepted sequencing nominations from Dr. Worden and provided sequencing funds in support of understanding .

"The phytoplankton in the oceans are, of course, really important to regulating our climate, and we just never knew that they were able to sense our environment in this way," she says.

Dr. Worden says her collaborators are interested in understanding the origins of photosynthetic life, in part because it played a crucial role in allowing other life forms, including humans, to exist. The research could also help with food production by teaching us ways to engineer crops so they will grow in many conditions.

Explore further: Micro fingers for arranging single cells

More information: PNAS DOI: 10.1073/pnas.1401871111

Related Stories

Why red algae never colonized dry land

Mar 21, 2013

The first red alga genome has just been sequenced by an international team coordinated by CNRS and UPMC at the Station Biologique de Roscoff (Brittany), notably involving researchers from CEA-Genoscope, the ...

Deep-sea algae may be 'living fossils'

Nov 19, 2010

(PhysOrg.com) -- Researchers in the US and Belgium say two types of deep-sea seaweed may be representatives of ancient forms of algae previously unrecognized.

Recommended for you

Micro fingers for arranging single cells

14 hours ago

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Detailed structure of human ribosome revealed

16 hours ago

A team at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC - CNRS/Université de Strasbourg/Inserm) has evidenced, at the atomic scale, the three-dimensional structure of the complete ...

How to kill a protein

16 hours ago

For decades scientists have been looking closely at how our cells make proteins. But the inverse is equally important: how cells kill them.

How RNA machinery navigates our genomic obstacle course

16 hours ago

Once upon a time, scientists thought RNA polymerase—the molecule that kicks off protein synthesis by transcribing DNA into RNA—worked like a wind-up toy: Set it down at a start site in our DNA and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.