Appearance of Lyme disease rash can help predict how bacteria spreads through body

February 4, 2014

Lyme disease is often evident by a rash on the skin, but infections do not always produce similar rashes. This can make it difficult to detect the disease early, when antibiotic treatment is most effective. In the February 4th issue of the Biophysical Journal, published by Cell Press, researchers describe a new mathematical model that captures the interactions between disease-causing bacteria and the host immune response that affect the appearance of a rash and the spread of infection.

"Our findings are important because they connect how the rash looks with the behavior of the bacteria in our body," says co-author Dr. Charles Wolgemuth of the University of Arizona in Tucson.

Dr. Wolgemuth and graduate student Dhruv Vig developed a fairly simple that can account for the growth and appearance of a Lyme disease rash and might be used to predict the densities of the disease-causing bacteria in relationship to the rash as a function of time during spreading.

In many cases, patients with Lyme disease develop a rash with a bull's-eye appearance. The reveals that in these cases, the rash begins as a small and uniform rash. Activation of the immune response is strongest at the center of the rash and clears most, but not all, of the bacteria from the center within about one week; however, bacteria at the edge of the rash continue to spread outward, further activating the away from the edge. Therefore, the rash grows, but the center becomes less inflamed. As time progresses, though, the bacteria resurge at the center, leading to the characteristic bull's-eye pattern.

This video is not supported by your browser at this time.
This is a simulation that shows the development of a Lyme disease rash in time. Credit: Biophysical Journal, Vig et al.

By revealing that the bacteria and immune cell populations change as a rash progresses, the model may help guide Lyme disease treatment. "The model that we have developed can be used to predict how the bacteria move through our bodies and how they are affected by therapeutics," explains Dr. Wolgemuth. To that end, the researchers simulated the progression of different rash types over the course of . They found that for all types of Lyme disease rashes, were cleared from the skin within roughly the first week; however, the dynamics of disappearance of the rash varied depending on the type of rash with which the patient presented. For example, while bull's-eye rashes resolved within a week of treatment, uniform rashes tended to be present even after four weeks, likely due to prolonged inflammation. Such differences suggest that there may not be a one-size-fits-all treatment regimen for resolving Lyme disease and its effects on the body.

Dr. Wolgemuth also notes that there are a number of similarities between the bacterium that causes Lyme disease and the bacterium that causes syphilis, and that "therefore, it is likely that this model will also be applicable to understanding syphilis, as well as potentially other bacterial infections."

Explore further: Effective treatment of Lyme-disease-related arthritis depends on proper diagnosis

More information: Biophysical Journal, Vig et al.: "Spatiotemporal Evolution of Erythema Migrans, the Hallmark Rash of Lyme Disease."

Related Stories

Recommended for you

Organic semiconductors get weird at the edge

October 6, 2015

As the push for tinier and faster electronics continues, a new finding by scientists at the University of British Columbia (UBC) and Monash University could help inform the design of the next generation of cheaper, more efficient ...

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.