Living liquid crystals: Bacteria-filled liquid crystals could improve biosensing

February 17, 2014

Plop living, swimming bacteria into a novel water-based, nontoxic liquid crystal and a new physics takes over. The dynamic interaction of the bacteria with the liquid crystal creates a novel form of soft matter: living liquid crystal.

The new type of active material, which holds promise for improving the early detection of diseases, was developed by a research collaboration based at Ohio's Kent State University and Illinois' Argonne National Laboratory. The team will present their work at the 58th annual Biophysical Society Meeting, held in San Francisco, Feb.15-19.

As a biomechanical hybrid, living liquid crystal moves and reshapes itself in response to external stimuli. It also stores energy just as living organisms do to drive its internal motion. And it possesses highly desirable optical properties. In a living liquid crystal system, with the aid of a simple polarizing microscope, you can see with unusual clarity the wake-like trail stimulated by the rotation of bacterial flagella just 24-nanometers thick, about 1/4000th the thickness of an average human hair.

This video is not supported by your browser at this time.
Enabled by the birefringence of liquid crystal, motion of 24nm thick bacteria flagella now is easily visible using a simple polarizing microscope. Credit: S. Zhou, A. Sokolov, O. Lavrentovich and I. Aranson

You can also control and guide active movements of the bacteria by manipulating variables such as oxygen availability, temperature or surface alignment, thus introducing a new design concept for creating microfluidic biological sensors. Living liquid crystal provides a medium to amplify tiny reactions that occur at the micro- and nano-scales – where molecules and viruses interact – and to also easily optically detect and analyze these reactions. That suits living to making sensing devices that monitor biological processes such as cancer growth, or infection. Such microfluidic technology is of increasing importance to biomedical sensing as a means of detecting disease in its earliest stages when it is most treatable, and most cost-effectively managed.

"As far as we know, these things have never been done systematically as we did before in experimental physics," explained Shuang Zhou, a Ph.D. candidate at Ohio's Kent State University. He collaborated on the project with Oleg Lavrentovich of Kent State, Andrey Sokolov of Argonne National Laboratory, in Illinois, and Igor Aranson of Argonne National Laboratory and Northwestern University, in Evanston, Ill.

This video is not supported by your browser at this time.
Even at low Reynolds number, active bacteria can create periodic patterns when swimming in the viscoelastic liquid crystal. Credit: S. Zhou, A. Sokolov, O. Lavrentovich and I. Aranson

"There are many potential applications for this kind of new material, but some of the more immediate are new approaches to biomedical sensing design," Zhou said. He likens the current investigation to the "first handful of gold scooped out of a just-opened treasure chest. There are many more things to be done."

Explore further: Mobius strip ties liquid crystal in knots to produce tomorrow's materials and photonic devices

More information: The presentation "Living Liquid Crystals" by Shuang Zhou, Andrey Sokolov, Oleg D. Lavrentovich and Igor S. Aranson will be at 1:45 p.m. on Monday, February 17, 2014 in Hall D in San Francisco's Moscone Convention Center. Abstract:

Related Stories

New state of liquid crystals discovered

November 29, 2013

( —New collaborative research, carried out by Dr. Vitaly P. Panov, Research Fellow, and Jagdish K Vij, Honorary Professor of Electronic Materials of Trinity College Dublin's School of Engineering, Department of ...

Liquid crystal sensing badges monitor hazard exposure

December 5, 2013

In 1999, researchers in New York City identified the first case of West Nile virus, which over the next five years spread across the country. Infected mosquitoes transmit the virus into reptiles, amphibians, and some mammals—including ...

Liquid crystal turns water droplets into 'gemstones'

January 21, 2014

( —Liquid crystals are remarkable materials that combine the optical properties of crystalline solids with the flow properties of liquids, characteristics that come together to enable the displays found in most ...

Recommended for you

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.