Lifting the lid on silicon batteries

Feb 04, 2014 by Sarah Collins

(Phys.org) —Resolving the mystery of what happens inside batteries when silicon comes into contact with lithium could accelerate the commercialisation of next-generation high capacity batteries, for use in mobile phones and other applications.

Next-generation batteries based on silicon have come one step closer to commercial reality, after the mystery surrounding what is happening inside batteries when silicon comes into contact with lithium has been understood in unprecedented detail. Silicon-based technology would greatly expand the capacity of the batteries used in mobile phones, electric vehicles and other applications.

Using a combination of nanotechnology and nuclear magnetic resonance (NMR) techniques, researchers have developed a new probing system that gives a view into what is happening inside the batteries at the atomic level, enabling greater control over the properties of the materials.

Silicon has been proposed as a replacement for carbon in anodes (negative electrodes) for the past 20 years, as it has roughly ten times more storage capacity than carbon. However, difficulty in managing silicon's properties has prevented the technology from being applied at scale.

The primary problem with using silicon in a lithium-ion battery is that absorb lithium atoms, and the silicon expands up to three times in volume, degrading the battery. Although controlling this expansion has become easier over the past decade, a lack of understanding about what is happening inside the batteries and what governs the reactions have continued to hold silicon batteries back.

Researchers at the University of Cambridge have developed a new method to probe silicon batteries and determined what causes the expansion to take place. The results are reported in the 3 February edition of the journal Nature Communications.

"The most basic challenge for delivering such high-capacity batteries is to understand the reactions going on inside them," said lead author Dr Ken Ogata of the Department of Engineering.

Using nanoscale wires made of silicon and NMR techniques, the researchers developed a robust model system able to accommodate the expansion of the silicon over multiple cycles, and integrated it with short-range probing techniques that reveal what is happening inside the battery at the . The team found that the reactions proceed with interactions of various sizes of silicon networks and clusters, energetics of which partly govern the path of the reaction.

Using these combined techniques, the researchers were able to develop a 'map' of how silicon transforms when it is put into contact with lithium in a battery. The insights opened up by the technology will boost further developments of silicon batteries, as it will be easier for engineers to control their properties.

"Using this technique will help make battery design much more systematic, and less trial and error," said Dr Ogata. "The nanowire-based batteries coupled with the NMR system enabled us to follow the reaction kinetics over multiple cycles with various cycling strategies. Importantly, the insights achieved by the new technology are relevant to current state-of-the-art -carbon composite anodes and will lead to further development of the anodes."

This versatile nanowire-based technology can be applied to other battery system such as tin and germanium-based lithium-ion batteries and sodium-ion batteries, and studies are currently on going with the NMR spectroscopy under a wide variety of electrochemical regimes.

Explore further: Battery design gets boost from aligned carbon nanotubes

More information: "Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy." K. Ogata, E. Salager, C.J. Kerr, A.E. Fraser, C. Ducati, A.J. Morris, S. Hofmann & C.P. Grey. Nature Communications 5, Article number: 3217 DOI: 10.1038/ncomms4217. Received 26 June 2013 Accepted 07 January 2014 Published 03 February 2014

Related Stories

Battery development may extend range of electric cars

Jan 09, 2014

It's known that electric vehicles could travel longer distances before needing to charge and more renewable energy could be saved for a rainy day if lithium-sulfur batteries can just overcome a few technical ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...