Controlling the 'length' of supramolecular polymers through self-organization

February 3, 2014
Figure 1: Diagram of self-organization (a) In general, self-organization process cannot be controlled as it proceeds spontaneously. (b) In the self-organization process newly discovered, two self-organization pathways (A and B) interplayed. By tuning the balance between such pathways, the research team succeeded in controlling the timing and rate of the self-organization process. The photographs in the diagram are atomic force microscope images.

The National Institute of Materials Science (NIMS) developed a method for controlling the molecular self-organization, the process that is significant for synthesizing functional materials, and succeeded for the first time in the world in controlling the length of a one-dimensional assembly of molecules (supramolecular polymer).

A team of researchers of the Polymer Materials Unit of the Advanced Key Technologies Division of the National Institute of Materials Science discovered that in the process of the self-organization of molecules into a one-dimensional molecular assembly (supramolecular ), several different self-organization pathways interplayed. By making use of this phenomenon, they succeeded in controlling the length of a supramolecular polymer.

The phenomenon in which molecules self-organize (self-organization) is a significant process to synthesize a new type of functional polymers called . However, it has been difficult to control this process at will because it proceeds spontaneously. In contrast, in the conventional polymer synthesis, a technique called living polymerization enables the precise control over the length of the polymer to be synthesized, and it has been widely used in industry. However, there has been no equivalent to this technique available for synthesizing supramolecular polymers through the self-organization of molecules.

In general, self-organization proceeds from a molecularly dispersed state to an organized state through a single pathway. The research team synthesized new functional molecules and discovered that two self-organization pathways interplay each other when the self-organize. They found that the mechanism behind this is similar to that of living polymerization, which has been conventionally applied in polymer synthesis. Using this understanding of the mechanism taking place, they succeeded for the first time in the world in controlling the length of the supramolecular polymers produced through self-organization.

Self-organization is a concept of extreme importance in a wide range of interdisciplinary fields covering , nanotechology and biotechnology, and it attracts great attention as a new method of material synthesis. With vigorous research going on with regard to the properties and functions of new materials produced through self-organization, the research team has found a method of controlling the 'length' of supramolecular polymers, which is one of the most fundamental structural parameters in material design. The research results are expected to bring about new developments in basic and applied research based on self-organization.

Explore further: First success in real time observation of process of solubilization of CNT by polymer

More information: "Living supramolecular polymerization realized through a biomimetic approach" S. Ogi, K. Sugiyasu,* S. Manna, S. Samitsu, M. Takeuchi. Nature Chemistry, DOI: 10.1038/NCHEM.1849

Related Stories

Developing methods for building precise nanostructures

January 13, 2014

Researchers at Case Western Reserve University have received a $540,000 federal grant to devise methods for building minute structures tailored to precisely deliver medicines to tumors or carry dyes that help imaging technologies ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.