How did the Late Heavy Bombardment affect Earth's crust?

Feb 24, 2014 by Aaron L. Gronstal
Impacting the Hadean Earth
The process of collision and accretion created the four rocky, or terrestrial, planets of our inner solar system — Mercury, Venus, Earth, and Mars. Credit: NASA Discovery Program

Astrobiologists supported by the NASA Astrobiology Institute have assessed the effects of impacts on the crust of the early Earth. The research could help determine whether or not evidence of such violent events in our planet's early history could still be found in the geological record.

During the first billion years after its formation, the inner solar system was crowded with debris. This resulted in frequent collisions, which not only played a role in the formation and evolution of planets like Earth and Mars, but also helped shape their potential to host life. Today, it is difficult to determine the details of how this 'impact epoch' affected the young planets.

The new study estimates the thermal effects of a period known as the Late Heavy Bombardment (LHB) on Earth. The LHB is hypothesized to have occurred roughly 3.9 billion years ago during the Hadean eon, and was a time when impacts were especially frequent. Heat generated by the impacts left up to 10 percent of the planet's surface covered with melt sheets more than a kilometer thick. Ejecta and vaporized rock were sprayed into the air and deposited around the globe. Astrobiologists have long wondered if any evidence of LHB impacts could still remain in rocks left over from the Hadean (such as rocks from the Jack Hills in Australia).

To answer this question, the team of scientists focused on a mineral called zircon. Zircon contains lead, and this element can be removed from the mineral as it is melted and re-shaped by impacts.

The team used sophisticated models to determine whether or not zircons in Hadean rocks could contain signatures left over from the LHB based on the amount of lead they contain. They concluded that if these minerals indeed contain signatures of the LHB, they would have come from the impact ejecta (the materials tossed into the air by the violent collisions). Zircons in rocks at the surface of the planet would not likely have survived in the vast melt sheets.

The paper, "The impact environment of the Hadean Earth," was published in the journal Chemie der Erde – Geochemistry.

Explore further: Oldest bit of crust firms up idea of a cool early Earth

More information: Oleg Abramov, David A. Kring, Stephen J. Mojzsis, "The impact environment of the Hadean Earth," Chemie der Erde - Geochemistry, Volume 73, Issue 3, October 2013, Pages 227-248, ISSN 0009-2819, DOI: 10.1016/j.chemer.2013.08.004.

add to favorites email to friend print save as pdf

Related Stories

Ancient minerals: Which gave rise to life?

Nov 25, 2013

Life originated as a result of natural processes that exploited early Earth's raw materials. Scientific models of life's origins almost always look to minerals for such essential tasks as the synthesis of ...

Oldest bit of crust firms up idea of a cool early Earth

Feb 23, 2014

With the help of a tiny fragment of zircon extracted from a remote rock outcrop in Australia, the picture of how our planet became habitable to life about 4.4 billion years ago is coming into sharper focus.

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.