Healthy rivers make healthy marshes, says Sapelo Island research

Feb 11, 2014 by James E. Hataway

(Phys.org) —The health of salt marshes on the Georgia coast depends on the amount of water flowing through the state's rivers, according to a new study from the Georgia Coastal Ecosystems Long-Term Ecological Research program, which operates out of the University of Georgia Marine Institute on Sapelo Island.

Salt marshes on the Georgia support fisheries and wildlife, filter nutrients, and protect the coast from storms. Many of these benefits come from vigorous growth of salt marsh cordgrass, a tall grass that is the most abundant plant in . But growth of this plant can be as much as three times greater in one year than another.

To understand why, GCE-LTER scientists measured the cordgrass growth in nine different marshes on the Georgia coast for 12 years. The single factor that best explained plant growth was the amount of reaching the coast from the Altamaha River during the late spring and summer months.

In years with more water flowing out of the river, plants were up to three times larger than in years with little water flowing through the river. More fresh water reaching the coast reduces the amount of salt in the marshes, which in turn reduces stress that limits plant growth.

"Coastal rainfall and year to year variation in sea level also affected plant growth to some extent," said Kazik Więski, a postdoctoral associate at the University of Houston who was the lead author of a paper explaining the discovery in the journal Ecosystems. "This was because rainfall and sea level also both affect the amount of salt in the marshes. But river flow had the greatest effect."

"We tend to think of salt marsh plants as being adapted to high salt levels," said Steven Pennings, a professor at the University of Houston who worked with Więski on the project. "But tolerating high salt levels is still hard work for these plants. When they get a break from high levels, they have more resources that they can put into growth".

Although some of the study sites were located very close to the Altamaha River, others were located as much as 15 miles away, yet river flow affected at all sites. This happened because the fresh river water that reaches the estuary rapidly spreads out and moves up and down the coast through the complex network of channels and intertidal marsh.

In addition, fresh water that reaches the ocean can be pushed back into adjacent estuaries by the wind and tides, explained Daniela Di Iorio, associate professor of marine sciences UGA, who is also part of the GCE-LTER program.

"These results have implications for water management in the state of Georgia," said Merryl Alber, professor of marine sciences at UGA and the director of the GCE-LTER program. "Taking water out of Georgia rivers during the late spring and summer months, especially during dry years, could have a negative effect on the health of our coastal marshes."

"We also found that hotter summers had less cordgrass growth," said Więski. "This happens because too much heat is also a stress to the plants. This is a potential concern for the future as we face rising global temperatures. But the implications for water management are something that we can address right now."

Explore further: Quality of biodiversity, not just quantity, is key

add to favorites email to friend print save as pdf

Related Stories

Salt marsh carbon may play role in slowing climate warming

Sep 26, 2012

A warming climate and rising seas will enable salt marshes to more rapidly capture and remove carbon dioxide from the atmosphere, possibly playing a role in slowing the rate of climate change, according to a new study led ...

Recommended for you

China says massive area of its soil polluted

3 hours ago

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

Book offers simplified guide to shale gas extraction

3 hours ago

The new book, "Science Beneath the Surface: A Very Short Guide to the Marcellus Shale," attempts to offer a reader-friendly, unbiased, scientific guide needed to make well-informed decisions regarding energy ...

New approach needed to deal with increased flood risk

4 hours ago

Considering the impacts of climate change on flood risk may not be effective unless current risk is managed better, according to new research from the University of Bristol published today in the Journal ...

Researchers question emergency water treatment guidelines

23 hours ago

The Environmental Protection Agency's (EPA's) recommendations for treating water after a natural disaster or other emergencies call for more chlorine bleach than is necessary to kill disease-causing pathogens ...

User comments : 0

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

First radar vision for Copernicus

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

Image: Grand Canyon geology lessons on view

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

Book offers simplified guide to shale gas extraction

The new book, "Science Beneath the Surface: A Very Short Guide to the Marcellus Shale," attempts to offer a reader-friendly, unbiased, scientific guide needed to make well-informed decisions regarding energy ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...