Better understanding of hardy bacteria enhances tool for biofuel creation

Feb 04, 2014
Artistic rendition of cell-permeable chemical probes labeling redox-sensitive cysteine thiols in living Synechococcus sp. PCC7002. The background depicts the photobioreactor used to culture the cyanobacteria. The probes and photobioreactor were developed at Pacific Northwest National Laboratory.

Scientists at Pacific Northwest National Laboratory have charted a significant signaling network in a tiny organism that's big in the world of biofuels research. The findings about how a remarkably fast-growing organism conducts its metabolic business bolster scientists' ability to create biofuels using the hardy microbe Synechococcus, which turns sunlight into useful energy.

The team glimpsed key chemical events, known as , inside living of the organism by using a chemical probe they developed that allows live-cell labeling. They also developed an in vivo labeling and imaging strategy to identify proteins undergoing these reactions in the photoautotrophic cyanobacterium. Their publication in ACS Chemical Biology marks the first time that redox activity, a very fast regulatory network involved in all major aspects of a cell's operation, has been observed in specific proteins within living cells. See more in the PNNL news release.

Explore further: 3D printing technique explored to help treat type 1 diabetes

More information: Sadler NC, MR Melnicki, M Serres, ED Merkley, WB Chrisler, EA Hill, MF Romine, S Kim, EM Zink, S Datta, RD Smith, AS Beliaev, A Konopka, and AT Wright. 2014. "Chemical Profiling of Live Cell Temporal Redox Dynamics in a Photoautotrophic Cyanobacterium." ACS Chemical Biology 9(1). DOI: 10.1021/cb400769v.

Related Stories

Scientists capture 'redox moments' in living cells

Nov 25, 2013

Scientists have charted a significant signaling network in a tiny organism that's big in the world of biofuels research. The findings about how a remarkably fast-growing organism conducts its metabolic business ...

Engineered microbes grow in the dark

May 20, 2013

Scientists at the University of California, Davis have engineered a strain of photosynthetic cyanobacteria to grow without the need for light. They report their findings today at the 113th General Meeting of the American ...

Breakthrough: Sensors monitor cells at work

Jul 02, 2013

Transport proteins are responsible for moving materials such as nutrients and metabolic products through a cell's outer membrane, which seals and protects all living cells, to the cell's interior. These transported molecules ...

New protein tag enhances view within living cells

Feb 22, 2008

The view into the inner world of living cells just got a little brighter and more colorful. A powerful new research tool, when used with other labeling technologies, allows simultaneous visualization of two or more different ...

Recommended for you

Expanding the code of life with new 'letters'

18 hours ago

The DNA encoding all life on Earth is made of four building blocks called nucleotides, commonly known as "letters," that line up in pairs and twist into a double helix. Now, two groups of scientists are reporting ...

Researchers find 'decoder ring' powers in micro RNA

May 26, 2015

MicroRNA can serve as a "decoder ring" for understanding complex biological processes, a team of New York University chemists has found. Their study, which appears in Proceedings of the National Academy of Sciences, points ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.