Better understanding of hardy bacteria enhances tool for biofuel creation

Feb 04, 2014
Artistic rendition of cell-permeable chemical probes labeling redox-sensitive cysteine thiols in living Synechococcus sp. PCC7002. The background depicts the photobioreactor used to culture the cyanobacteria. The probes and photobioreactor were developed at Pacific Northwest National Laboratory.

Scientists at Pacific Northwest National Laboratory have charted a significant signaling network in a tiny organism that's big in the world of biofuels research. The findings about how a remarkably fast-growing organism conducts its metabolic business bolster scientists' ability to create biofuels using the hardy microbe Synechococcus, which turns sunlight into useful energy.

The team glimpsed key chemical events, known as , inside living of the organism by using a chemical probe they developed that allows live-cell labeling. They also developed an in vivo labeling and imaging strategy to identify proteins undergoing these reactions in the photoautotrophic cyanobacterium. Their publication in ACS Chemical Biology marks the first time that redox activity, a very fast regulatory network involved in all major aspects of a cell's operation, has been observed in specific proteins within living cells. See more in the PNNL news release.

Explore further: Scientists capture 'redox moments' in living cells

More information: Sadler NC, MR Melnicki, M Serres, ED Merkley, WB Chrisler, EA Hill, MF Romine, S Kim, EM Zink, S Datta, RD Smith, AS Beliaev, A Konopka, and AT Wright. 2014. "Chemical Profiling of Live Cell Temporal Redox Dynamics in a Photoautotrophic Cyanobacterium." ACS Chemical Biology 9(1). DOI: 10.1021/cb400769v.

add to favorites email to friend print save as pdf

Related Stories

Scientists capture 'redox moments' in living cells

Nov 25, 2013

Scientists have charted a significant signaling network in a tiny organism that's big in the world of biofuels research. The findings about how a remarkably fast-growing organism conducts its metabolic business ...

Engineered microbes grow in the dark

May 20, 2013

Scientists at the University of California, Davis have engineered a strain of photosynthetic cyanobacteria to grow without the need for light. They report their findings today at the 113th General Meeting of the American ...

Breakthrough: Sensors monitor cells at work

Jul 02, 2013

Transport proteins are responsible for moving materials such as nutrients and metabolic products through a cell's outer membrane, which seals and protects all living cells, to the cell's interior. These transported molecules ...

New protein tag enhances view within living cells

Feb 22, 2008

The view into the inner world of living cells just got a little brighter and more colorful. A powerful new research tool, when used with other labeling technologies, allows simultaneous visualization of two or more different ...

Recommended for you

Chemists eye improved thin films with metal substitution

14 hours ago

The yield so far is small, but chemists at the University of Oregon have developed a low-energy, solution-based mineral substitution process to make a precursor to transparent thin films that could find use ...

Essential oils may provide good source of food preservation

18 hours ago

A new study in the Journal of Food Science, published by the Institute of Food Technologists (IFT), found that essential oils may be able to be used as food preservatives in packaging to help extend the shelf-life of foo ...

User comments : 0