Gummy material addresses safety concerns of lithium ion batteries

Feb 04, 2014 by Tina Hilding
Washington State University graduate student Yu "Will" Wang (l) and Professor Katie Zhong have worked on an electrolyte that is twice as sticky as chewing gum. Credit: Washington State University

A group of Washington State University researchers have developed a chewing gum-like battery material that could dramatically improve the safety of lithium ion batteries.

Led by Katie Zhong, Westinghouse Distinguished Professor in the School of Mechanical and Materials Engineering, the researchers recently reported on their work in the journal, Advanced Energy Materials. They have also filed a patent.

High performance lithium batteries are popular in everything from computers to airplanes because they are able to store a large amount of energy compared to other batteries. Their biggest potential risk, however, comes from the electrolyte in the battery, which is made of either a liquid or gel in all commercially available rechargeable lithium batteries. Electrolytes are the part of the battery that allow for the movement of ions between the anode and the cathode to create electricity. The liquid acid solutions can leak and even create a fire or chemical burn hazard.

While commercial battery makers have ways to address these safety concerns, such as adding temperature sensors or flame retardant additives, they "can't solve the safety problem fundamentally,'' says Zhong.

Zhong's research group has developed a gum-like lithium battery electrolyte, which works as well as liquid electrolytes at conducting electricity but which doesn't create a fire hazard.

Researchers have been toying around with solid electrolytes to address safety concerns, but they don't conduct electricity well and it's difficult to connect them physically to the anode and cathode. Zhong was looking for a material that would work as well as liquid and could stay attached to the anode and cathode – "like when you get chewing gum on your shoe,'' she told her students.

Advised by Zhong, graduate student Yu "Will" Wang designed his electrolyte model specifically with gum in mind. It is twice as sticky as real gum and adheres very well to the other battery components.

The material, which is a hybrid of liquid and solid, contains liquid electrolyte material that is hanging on solid particles of wax or a similar material. Current can easily travel through the liquid parts of the electrolyte, but the solid particles act as a protective mechanism. If the material gets too hot, the solid melts and easily stops the electric conduction, preventing any fire hazard. The electrolyte material is also flexible and lightweight, which could be useful in future flexible electronics. You can stretch, smash, and twist it, and it continues to conduct electricity nearly as well as liquid electrolytes. Furthermore, the gummy electrolyte should be easy to assemble into current battery designs, says Zhong.

While the researchers have shown good conductivity with their , they hope to begin testing their idea soon in real batteries. Zhong's group was part of a group of WSU researchers that received support from the Washington Research Foundation last year to equip a manufacturing laboratory for building and testing in commercial sizes. The research groups also are working together to combine their technologies into safer, flexible low-cost batteries.

Explore further: Solid-state battery could double the range of electric cars

Related Stories

Study paves way for larger, safer lithium ion batteries

Jan 23, 2013

(Phys.org)—Looking toward improved batteries for charging electric cars and storing energy from renewable but intermittent solar and wind, scientists at Oak Ridge National Laboratory have developed the ...

Solid-state battery could double the range of electric cars

Sep 19, 2013

(Phys.org) —A cutting-edge battery technology developed at the University of Colorado Boulder that could allow tomorrow's electric vehicles to travel twice as far on a charge is now closer to becoming a commercial reality.

Battery development may extend range of electric cars

Jan 09, 2014

It's known that electric vehicles could travel longer distances before needing to charge and more renewable energy could be saved for a rainy day if lithium-sulfur batteries can just overcome a few technical ...

Recommended for you

Obama launches measures to support solar energy in US

11 hours ago

The White House Thursday announced a series of measures aimed at increasing solar energy production in the United States, particularly by encouraging the installation of solar panels in public spaces.

Tailored approach key to cookstove uptake

12 hours ago

Worldwide, programs aiming to give safe, efficient cooking stoves to people in developing countries haven't had complete success—and local research has looked into why.

Wireless power transfer achieved at five-meter distance

12 hours ago

The way electronic devices receive their power has changed tremendously over the past few decades, from wired to non-wired. Users today enjoy all kinds of wireless electronic gadgets including cell phones, ...

User comments : 0

More news stories

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...