Epigenetic regulation required to ensure correct number of chromosomes

February 16, 2014

Abnormal number of chromosomes is often associated with cancer development. In a new study published in the journal Nature Structural and Molecular Biology researchers at Karolinska Institutet in Sweden have shown that a subtle epigenetic change plays an important role in the correct segregation of chromosomes.

Normally when a cell divides, the chromosomes are segregated equally to two . However, tumour cells frequently have either too few or too many chromosomes, leading to the incorrect expression of a number of genes. When a cell is about to divide, the machinery takes hold of chromosomes by the centromere so that they may be pulled apart and one copy of each given to the daughter cells.

In the current study, researchers have shown that an epigenetic process, involving the attachment of a small protein to the histone H2B (called H2Bub1), facilitates an important structural change of the centromere immediately prior to cell division. It was previously shown that enzymes that modify histone H2B in this way also play a role in protecting against cancer. This was previously linked to defects in chromosomal repair.

"Our study confirms this role for H2Bub1, but we are extending it to include another mechanism that directly leads to the incorrect number of in cells," says Peter Svensson at the Department of Biosciences and Nutrition, one of the researchers who conducted the study.

The researchers behind the new study say that the fact that this mechanism is highly similar in and suggests that it plays a key role in ensuring proper chromosome distribution following each cell division. The research has been funded by the Swedish Research Council, and the Swedish Cancer Society.

Explore further: Biologists identify proteins vital to chromosome segregation

More information: "Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity", Laia Sadeghi, Lee Siggens, J Peter Svensson & Karl Ekwall, Nature Structural & Molecular Biology, online 16 February 2013, doi.org/10.1038/nsmb.2776

Related Stories

Biologists identify proteins vital to chromosome segregation

December 24, 2012

New York University biologists have identified how a vital protein is loaded by others into the centromere, the part of the chromosome that plays a significant role in cell division. Their findings shed new light on genome ...

What makes cell division accurate?

January 23, 2014

As all school-children learn, cells divide using a process called mitosis, which consists of a number of phases during which duplicate copies of the cell's DNA-containing chromosomes are pulled apart and separated into two ...

New application of physics tools used in biology

February 7, 2014

A Lawrence Livermore National Laboratory physicist and his colleagues have found a new application for the tools and mathematics typically used in physics to help solve problems in biology.

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.