Enzymes linked to cell death play key role in structural dynamics of neuronal axons

Feb 07, 2014
Figure 1: Young visual-system axon arbors (top) show localized caspase activation at branch points (green and blue), while older axons do not show caspase activation (bottom). Credit: D. S. Campbell & H. Okamoto

Strict regulation of axon branching and synapse formation is critical for the correct development of the embryonic nervous system, and dysfunction in these processes can lead to neurodevelopmental and neurodegenerative disorders. Douglas Campbell and Hitoshi Okamoto from the RIKEN Brain Science Institute in Wako have now found that the activity of enzymes called caspases in the visual system of zebrafish embryos contributes to the dynamic addition and retraction of new branch tips at the ends of developing axons.

Caspases are involved in a form of known as apoptosis. However, their function in structurally complex cells such as neurons, which have multiple compartments including dendrites, an axon and a cell body, could vary depending on where in the cell they are localized.

Using a fluorescence tracking system that senses activity, and taking advantage of the transparency of the zebrafish embryo for imaging, Campbell and Okamoto observed that high caspase activity occurred in axons at a point in development when visual-system axons are known to be highly dynamic. In embryos at a later developmental window when axons are known to be stable, axons were found to display lower caspase activity (Fig. 1).

By examining branching locations over time, Campbell and Okamoto found that the regions that would soon generate a new branch point exhibited increased caspase activation compared with regions that did not branch. They showed that reducing caspase expression in neurons led to enhanced stability, not only of axons but also of synaptic sites within the axons. These findings suggest that caspase expression allows the to remain morphologically flexible.

Many ligand–receptor systems, such as the ligand Slit, and its corresponding receptor, Robo, play an important role in regulating axon morphology during development. A previous study by Campbell and his colleagues showed that loss of Slit or Robo function could result in a more stable axonal morphology, suggesting that the Slit–Robo ligand–receptor system may modulate caspase signaling in order to affect the dynamics of axon branching and . In zebrafish embryos with reduced Slit or Robo signaling, there was no caspase activation at axon branch points, providing evidence that caspases are activated after the induction of slit–robo signaling.

"Dysregulation of caspase activity could be crucial to the initiation of neurodegeneration. Identification of the mechanisms of caspase activation may therefore be relevant to understanding these disorders," explains Campbell.

Explore further: Everything in moderation: Excessive nerve cell pruning leads to disease

More information: Campbell, D. S. & Okamoto, H. "Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization." The Journal of Cell Biology 203, 657–672 (2013). dx.doi.org/10.1083/jcb.201303072

add to favorites email to friend print save as pdf

Related Stories

How the brain makes myelination activity-dependent

Jan 10, 2014

(Medical Xpress)—A major question regarding how axons acquire a coat of myelin, is the role of spiking activity. It is known that in culture systems oligodendroctyes will at least try to wrap anything ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...