What to expect from Dyson's new robotics lab

Feb 13, 2014 by Nick Hawes, The Conversation
‘Avoid cat’, or ‘torment cat’? Credit: anti_christa

James Dyson's decision to fund a robotics laboratory at Imperial College London may not lead to the super advanced robot friends of our dreams, but what he has planned could make robotic domestic appliances significantly more realistic.

The Dyson Robotics Laboratory is a £5 million collaboration between the British-based domestic technology company and one of the UK's leading computer science departments. Researchers at the centre will investigate how to help robots not only sense their surroundings but be able to identify objects within their immediate environment. This, it is hoped, will mean a could sort out your dirty washing or clear a table.

It seems everyone is getting in on the robotics act lately. The UK government has highlighted the field among its eight top priorities for science spending and the European Commission has pledged new funding for robotics research.

Google has bought both Boston Dynamics, famous for its animal-like robots, and artificial intelligence specialists DeepMind. Amazon, meanwhile, is teasing us with promises of deliveries-by-drone in the future.

Dyson's comments about creating "machines that see and think in the way that we do" have inevitably led to excitement about futuristic robot servants. We should try to contain our excitement on this front as we are likely to be disappointed. It is highly unlikely the Dyson lab or any of the other bold plans announced over the past 12 months will lead to robots capable of learning or acting like humans. Most robots, even the most sophisticated, are still usually only capable of doing one thing. The difficulties of robotic perception, cognition and action in the real world are such that the required general purpose intelligence is still many generations away.

But this new centre is not about general purpose intelligence. It is focusing on 3D sensing, a fairly well understood robotics technology that could realistically produce applications in the near term future.

From 2D to 3D

Most tasks a robot must do, say, grasping objects or driving through crowds, involve measuring. For many years robots could only measure in 2D, typically using sonar or laser. The jump to 3D is essential, and has been made possible by devices such as the Microsoft Kinect and also by monocular visual SLAM, a technique pioneered by Andrew Davidson, the very man who will lead the new Dyson lab.

"Monocular" means this technique uses just one camera, while "visual" means the camera uses normal, visible light, unlike the Kinect, which uses infrared. This is important as normal light captures useful information about the world, such as colour, which is useful for telling objects apart, and shadows that can help indicate shape and position, neither of which are visible in other bandwidths.

The "SLAM" part stands for simultaneous localisation and mapping. This is the technique of building a map – a 3D picture of the world – while working out where you are on that map at the same time. When a robot moves around a room, visual SLAM is performed by finding distinctive parts of an image, then tracking how these parts move as the robot moves.

SLAM is an essential technology in almost all robots that move around, as it allows them to work out where they are. A 3D map can also allow a robot to find objects in its environment, such as your keys, or avoid obstacles, such as your cat. It can also use the map to decide how best to do things, such as hoovering your floor using the shortest route possible.

Cameras are an ideal sensor for a home robot because they can be small, light and cheap. This means future Dyson home robots will be able to map your home in 3D for very little extra cost. Images from cameras can also be used for object and face recognition, which would make robotic home help even more efficient.

The Dyson lab won't bring us Rosie the Robot Maid any time soon but this investment could open the way for a new generation of single-purpose intelligent domestic appliances. It could bring us the robot vacuum that can clean around your complicated media centre and perhaps even something that can tidy up a child's bedroom without putting everything in the wrong place. That's a pretty enticing prospect for most parents.

Explore further: Humanoid robot that sees and maps

add to favorites email to friend print save as pdf

Related Stories

Humanoid robot that sees and maps

Jul 02, 2013

(Phys.org) —Computer vision algorithms that enable Samsung's latest humanoid robot, Roboray, to build real-time 3D visual maps to move around more efficiently have been developed by researchers from the ...

Robots learn from each other on 'Wiki for robots'

Jan 13, 2014

Now it's not just people – robots are also connected by internet thanks to RoboEarth. Next week, after four years of research, scientists at Eindhoven University of Technology (TU/e), Philips and four other ...

Startup has a way to put brains in DIY robots

Jan 15, 2014

(Phys.org) —Want to build a robot? Good. Want to add intelligence? Great. Two robotics innovators want to give makers an easy way to bestow brains on their robots. Meet Rex, a robot controller board, which ...

Recommended for you

A robot dives into search for Malaysian Airlines flight

Apr 18, 2014

In the hunt for signs of Malaysian Airlines flight MH370—which disappeared on March 8 after deviating for unknown reasons from its scheduled flight path—all eyes today turn to a company that got its start ...

Simplicity is key to co-operative robots

Apr 16, 2014

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Students turn $250 wheelchair into geo-positioning robot

Apr 16, 2014

Talk about your Craigslist finds! A team of student employees at The University of Alabama in Huntsville's Systems Management and Production Center (SMAP) combined inspiration with innovation to make a $250 ...

Using robots to study evolution

Apr 14, 2014

A new paper by OIST's Neural Computation Unit has demonstrated the usefulness of robots in studying evolution. Published in PLOS ONE, Stefan Elfwing, a researcher in Professor Kenji Doya's Unit, has succes ...

User comments : 0

More news stories

First steps towards "Experimental Literature 2.0"

As part of a student's thesis, the Laboratory of Digital Humanities at EPFL has developed an application that aims at rearranging literary works by changing their chapter order. "The human simulation" a saga ...

TCS, Mitsubishi to create new Japan IT services firm

India's biggest outsourcing firm Tata Consultancy Services (TCS) and Japan's Mitsubishi Corp said Monday they are teaming up to create a Japanese software services provider with annual revenues of $600 million.

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Meth mouth menace

Something was up in Idaho. While visiting a friend in Athol, a small town north of Coeur d'Alene, Jennifer Towers, director of research affairs at the Tufts University School of Dental Medicine, noticed ...