Critical factor (BRG1) identified for maintaining stem cell pluripotency

Feb 06, 2014
©2014, Mary Ann Liebert, Inc., publishers

The ability to reprogram adult cells so they return to an undifferentiated, pluripotent state—much like an embryonic stem cell—is enabling the development of promising new cell therapies. Accelerating progress in this field will depend on identifying factors that promote pluripotency, such as the Brg1 protein described in a new study published in BioResearch Open Access.

In "BRG1 Is Required to Maintain Pluripotency of Murine Embryonic Stem Cells," Nishant Singhal and coauthors, Max Planck Institute for Molecular Biomedicine, Münster, and University of Münster, Germany, demonstrate the critical role the Brg1 protein plays in regulating genes that are part of a network involved in maintaining the pluripotency of . This same network is the target for methods developed to reprogram adult somatic cells.

"This work further clarifies the role of the Brg1 containing BAF complex in regulating and has important implications for all cellular reprogramming technologies," says BioResearch Open Access Editor Jane Taylor, PhD, MRC Centre for Regenerative Medicine, University of Edinburgh, Scotland.

Explore further: Understanding how cells follow electric fields

More information: The article is available free on the BioResearch Open Access website.

Related Stories

Why stem cells need to stick with their friends

Nov 07, 2013

Scientists at University of Copenhagen and University of Edinburgh have identified a core set of functionally relevant factors which regulates embryonic stem cells' ability for self-renewal. A key aspect is the protein Oct4 ...

Recommended for you

Understanding how cells follow electric fields

7 hours ago

Many living things can respond to electric fields, either moving or using them to detect prey or enemies. Weak electric fields may be important growth and development, and in wound healing: it's known that ...

Protein scaffold

May 27, 2015

Right before a cell starts to divide to give birth to a daughter cell, its biochemical machinery unwinds the chromosomes and copies the millions of protein sequences comprising the cell's DNA, which is packaged ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.