Critical factor (BRG1) identified for maintaining stem cell pluripotency

Feb 06, 2014
©2014, Mary Ann Liebert, Inc., publishers

The ability to reprogram adult cells so they return to an undifferentiated, pluripotent state—much like an embryonic stem cell—is enabling the development of promising new cell therapies. Accelerating progress in this field will depend on identifying factors that promote pluripotency, such as the Brg1 protein described in a new study published in BioResearch Open Access.

In "BRG1 Is Required to Maintain Pluripotency of Murine Embryonic Stem Cells," Nishant Singhal and coauthors, Max Planck Institute for Molecular Biomedicine, Münster, and University of Münster, Germany, demonstrate the critical role the Brg1 protein plays in regulating genes that are part of a network involved in maintaining the pluripotency of . This same network is the target for methods developed to reprogram adult somatic cells.

"This work further clarifies the role of the Brg1 containing BAF complex in regulating and has important implications for all cellular reprogramming technologies," says BioResearch Open Access Editor Jane Taylor, PhD, MRC Centre for Regenerative Medicine, University of Edinburgh, Scotland.

Explore further: Researchers discover new mechanism of DNA repair

More information: The article is available free on the BioResearch Open Access website.

Related Stories

Why stem cells need to stick with their friends

Nov 07, 2013

Scientists at University of Copenhagen and University of Edinburgh have identified a core set of functionally relevant factors which regulates embryonic stem cells' ability for self-renewal. A key aspect is the protein Oct4 ...

Recommended for you

Researchers discover new mechanism of DNA repair

20 hours ago

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Stopping Candida in its tracks

Jul 03, 2015

Scientists are one step closer to understanding how a normally harmless fungus changes to become a deadly infectious agent.

New technique maps elusive chemical markers on proteins

Jul 02, 2015

Unveiling how the 20,000 or so proteins in the human body work—and malfunction—is the key to understanding much of health and disease. Now, Salk researchers developed a new technique that allows scientists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.