Map of complex, carbon-rich molecules abundant throughout the universe

Feb 24, 2014 by Rachel Hoover
Image of a nebula taken by NASA’s Spitzer Space Telescope. Credit: NASA/Jet Propulsion Laboratory

Scientists at NASA's Ames Research Center in Moffett Field, Calif., today released a significant expansion and upgrade to a public, online database that houses a unique and extensive collection of information about a family of complex, carbon-rich molecules that are both widespread and abundant throughout the universe. Scientists believe more than 20 percent of the carbon in the universe is tied up in this extensive family of compounds, collectively know as polycyclic aromatic hydrocarbons, or simply PAHs.

Using the Ames-developed PAH Infrared Spectroscopic Database, scientists will now have access to data on hundreds more compounds and several powerful new tools –including an advanced web app and a dedicated astronomical software package – to map the distribution of this life-essential element and track its role across the universe.

"Analyzing the PAH emission bands with the web app, new tools, and expanded database provides a powerful new way for astronomers to trace the evolution of cosmic carbon and, at the same time, probe conditions across the universe," said Christiaan Boersma, a research fellow at Ames who designed and developed many parts of the and tools. "We have expanded the computational spectral collection to 700 spectra, including those of extremely large PAHs composed of hundreds of carbon atoms, and the experimental collection to 75 spectra."

Over the past 20 years, NASA scientists experimentally measured and computed PAH spectroscopic signatures to track and analyze the unexpected, widespread PAH emission originating from deep space. NASA made the original collection of spectra and accompanying software available online four years ago.

The approach of analyzing the infrared spectra emitted by everything from dying stars to clouds of gas and dust to entire galaxies using the one-two punch of known PAH spectra and the new, blind, algorithm-driven codes now available, provides a unique look into the evolution of cosmic PAHs.

In addition to substantially increasing the number of spectra available, the new version of the database includes powerful, astronomer-friendly tools that mimic the PAHs' response to the local space environment and makes it possible to understand which types of PAHs are present in different regions of space. It also allows astronomers to tie these evolutionary changes to variations in local conditions such as those due to the radiation field, physical shape and history of the region.

"PAHs are so widespread and abundant in space that they don't just witness the conditions in their cosmic neighborhoods, they are active participants in many astronomical phenomena," said Louis Allamandola, an astrophysics researcher at Ames. "PAHs both are an important source of carbon for young, primordial planets, and influence how quickly they can form. For example, very bright PAH emission comes from places where new stars and exo-planets are forming."

NASA's Spitzer Space Telescope managed and operated by NASA's Jet Propulsion Laboratory in Pasadena, Calif., detected the PAH signature across the universe and showed PAHs were already forming only a couple of billion years after the Big Bang. Because their spectral signature is very sensitive to their local environment, especially radiation levels, the temperatures of PAHs in space can vary from nearly minus 450 degrees Fahrenheit to roughly 1,000 degrees, after which they break apart.

"Since PAHs are so sensitive to local conditions, analyzing the PAH bands as we did here represents a powerful new astronomical tool to trace the evolution of cosmic carbon and, at the same time, probe conditions in objects spanning the universe," said Allamandola.

The upgraded database allows scientists to determine how the PAH signature changes across this vast range of temperatures. Astronomers need simply to upload the spectra of their favorite celestial object into the website and see which PAH classes are needed to reproduce their spectra.

"This capability is a major step forward because it allows astronomers to directly tie their astronomical spectra to the spectra of individual, bona-fide PAHs, not generic, model dependent, mythical, cosmic material," said Allamandola. "And they can do all this on their mobile devices like iPads and iPhones, as well as personal computers."

PAHs in space are probably made the same way soot is made in the combustion engines that power trucks and cars here on Earth. In addition to astronomical applications, the expanded PAH database and powerful new software also is a useful research tool for scientists, educators, policy makers, and consultants working in the fields of medicine, health, chemistry, fuel composition, engine design, environmental assessment, environmental monitoring and protection, and nanotechnology.

Explore further: NIST creates polycyclic aromatic hydrocarbon structure index

add to favorites email to friend print save as pdf

Related Stories

NASA develops key to cosmic carbon's molecular evolution

May 14, 2013

(Phys.org) —Scientists at NASA's Ames Research Center, Moffett Field, Calif., now have the capability to systematically investigate the molecular evolution of cosmic carbon. For the first time, these scientists ...

NASA Reveals Key to Unlock Mysterious Red Glow in Space

Aug 02, 2010

(PhysOrg.com) -- NASA scientists created a unique collection of polycyclic aromatic hydrocarbon (PAH) spectra to interpret mysterious emission from space. Because PAHs are a major product of combustion, remain ...

NASA scientists on the trail of mystery molecules

May 25, 2011

(PhysOrg.com) -- Space scientists working to solve one cosmic mystery at NASA's Ames Research Center, Moffett Field, Calif., now have the capability to better understand unidentified matter in deep space. Using a new facility ...

Researchers brew up organics on ice

Sep 18, 2012

(Phys.org)—Would you like icy organics with that? Maybe not in your coffee, but researchers at NASA's Jet Propulsion Laboratory in Pasadena, Calif., are creating concoctions of organics, or carbon-bearing ...

Recommended for you

Image: NGC 6872 in the constellation of Pavo

13 hours ago

This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused ...

Measuring the proper motion of a galaxy

14 hours ago

The motion of a star relative to us can be determined by measuring two quantities, radial motion and proper motion. Radial motion is the motion of a star along our line of sight. That is, motion directly ...

Gravitational waves according to Planck

Sep 22, 2014

Scientists of the Planck collaboration, and in particular the Trieste team, have conducted a series of in-depth checks on the discovery recently publicized by the Antarctic Observatory, which announced last ...

Infant solar system shows signs of windy weather

Sep 22, 2014

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have observed what may be the first-ever signs of windy weather around a T Tauri star, an infant analog of our own Sun. This may help ...

Finding hints of gravitational waves in the stars

Sep 22, 2014

Scientists have shown how gravitational waves—invisible ripples in the fabric of space and time that propagate through the universe—might be "seen" by looking at the stars. The new model proposes that ...

How gamma ray telescopes work

Sep 22, 2014

Yesterday I talked about the detection of gamma ray bursts, intense blasts of gamma rays that occasionally appear in distant galaxies. Gamma ray bursts were only detected when gamma ray satellites were put ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

thingumbobesquire
1 / 5 (3) Feb 24, 2014
But didn't Jimmy Carter inform us that we are running out of resources?
GSwift7
not rated yet Feb 25, 2014
We have expanded ...the experimental collection to 75 spectra


That's a lot more work than most people probably realize. Imagine trying to re-create a perfect replica of Classic Coke in a lab, without knowing the recipe. (Hmmm, come to think of it, the chemical composition wouldn't be that different, lol.) For example, try mixing all the proper ingredients, in the proper ratios, without knowing what temperature or for how long to heat them, or the order needed for adding some of the ingredients. That's kinda the problem with 'cooking up' laboratory examples of some of these cosmic molecules, not to mention that it might take a perfect vaccum to do it, which we cannot do in a lab, or extremely high pressure, which we cannot do either.
GSwift7
5 / 5 (1) Feb 25, 2014
But didn't Jimmy Carter inform us that we are running out of resources?


If beer production stopped today, we would have only days of reserves before facing a worldwide crisis. Additionally, all of the beer production and storage in the known Universe is confined to merely a small portion of the surface of the Earth. I propose a Lunar Brewing Facility and Orbital Cooler to preserve this vital resource and the legacy of mankind. In the near term, we could re-purpose empty ICBM silos, but that would only be a stop-gap measure.