The coldest spot in the known universe

Feb 03, 2014 by Dr. Tony Phillips

Everyone knows that space is cold. In the vast gulf between stars and galaxies, the temperature of gaseous matter routinely drops to 3 Kelvin, or 454 degrees below zero Fahrenheit.

It's about to get even colder.

NASA researchers are planning to create the coldest spot in the known universe inside the International Space Station.

"We're going to study matter at temperatures far colder than are found naturally," says Rob Thompson of JPL. He's the Project Scientist for NASA's Cold Atom Lab, an atomic 'refrigerator' slated for launch to the ISS in 2016. "We aim to push effective temperatures down to 100 pico-Kelvin."

100 pico-Kelvin is just one ten billionth of a degree above , where all the thermal activity of atoms theoretically stops. At such , ordinary concepts of solid, liquid and gas are no longer relevant. Atoms interacting just above the threshold of zero energy create new forms of matter that are essentially ... quantum.

Quantum mechanics is a branch of physics that describes the bizarre rules of light and matter on atomic scales. In that realm, matter can be in two places at once; objects behave as both particles and waves; and nothing is certain: the quantum world runs on probability.

It is into this strange realm that researchers using the Cold Atom Lab will plunge.

"We'll begin," says Thompson, "by studying Bose-Einstein Condensates."

In 1995, researchers discovered that if you took a few million and cooled them near absolute zero, they would merge into a single wave of matter. The trick worked with sodium, too. In 2001, Eric Cornell of the National Institute of Standards & Technology and Carl Wieman of University of Colorado shared the Nobel Prize with Wolfgang Ketterle of MIT for their independent discovery of these condensates, which Albert Einstein and Satyendra Bose had predicted in the early 20th century.

If you create two BECs and put them together, they don't mix like an ordinary gas. Instead, they can "interfere" like waves: thin, parallel layers of matter are separated by thin layers of empty space. An atom in one BEC can add itself to an atom in another BEC and produce – no atom at all.

"The Cold Atom Lab will allow us to study these objects at perhaps the lowest temperatures ever," says Thompson.

The lab is also a place where researchers can mix super-cool atomic gasses and see what happens. "Mixtures of different types of atoms can float together almost completely free of perturbations," explains Thompson, "allowing us to make sensitive measurements of very weak interactions. This could lead to the discovery of interesting and novel quantum phenomena."

The space station is the best place to do this research. Microgravity allows researchers to cool materials to temperatures much colder than are possible on the ground.

Thompson explains why:

"It's a basic principle of thermodynamics that when a gas expands, it cools. Most of us have hands-on experience with this. If you spray a can of aerosols, the can gets cold."

Quantum gases are cooled in much the same way. In place of an aerosol can, however, we have a 'magnetic trap.'

"On the ISS, these traps can be made very weak because they do not have to support the atoms against the pull of gravity. Weak traps allow gases to expand and cool to lower temperatures than are possible on the ground."

No one knows where this fundamental research will lead. Even the "practical" applications listed by Thompson—quantum sensors, matter wave interferometers, and atomic lasers, just to name a few—sound like science fiction. "We're entering the unknown," he says.

Researchers like Thompson think of the Cold Atom Lab as a doorway into the quantum world. Could the door swing both ways? If the drops low enough, "we'll be able to assemble atomic wave packets as wide as a human hair—that is, big enough for the human eye to see." A creature of quantum physics will have entered the macroscopic world.

And then the real excitement begins.

Explore further: For the first time, researchers observe collective spin dynamics of ultra-cold fermions with large spins

More information: Click to download the Cold Atom Lab mission poster: coldatomlab.jpl.nasa.gov/documents/CAL_sci_poster_0709e.pdf

Related Stories

Giant atom eats quantum gas

Oct 31, 2013

A team of experimental and theoretical physicists from the University of Stuttgart studied a single micrometer sized atom. This atom contains tens of thousands of normal atoms in its electron orbital. These ...

Improving measurements by reducing quantum noise

Jun 27, 2013

If you want to measure something very precisely, such as slight variations of a length, then you are very likely to use light waves. However, many effects, such as variations of gravity, or surface forces, ...

Behavior of ultra-cold atoms and polar molecules modeled

Nov 26, 2013

Theoretical physicist Ana Maria Rey uses the computer, as well as pencil and paper, to develop mathematical models that describe the behavior of ultra-cold atoms. The idea is to use these systems to learn ...

Recommended for you

A sharp eye on Southern binary stars

1 hour ago

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

1 hour ago

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Cosmologists weigh cosmic filaments and voids

4 hours ago

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

SHREEKANT
1 / 5 (1) Feb 10, 2014
GOOD PLAN, but very risky

"In 1995, researchers discovered that if you took a few million rubidium atoms and cooled them near absolute zero, they would merge into a single wave of matter. The trick worked with sodium, too."

My comment: I agreed because my hypothesis also support it, but have doubt about sodium

"If you create two BECs and put them together, they don't mix like an ordinary gas. Instead, they can "interfere" like waves: thin, parallel layers of matter are separated by thin layers of empty space. An atom in one BEC can add itself to an atom in another BEC and produce – no atom at all."

My comment: I agree with whole statement

"It's a basic principle of thermodynamics that when a gas expands, it cools."

My comment: I contradict it, my view 'Gas expands when it cools'

http://swarajgrou...-in.html
shavera
not rated yet Feb 10, 2014
gas expansion -> cooling is observed. Cooling -> gas expansion not observed. regardless of your view.

Let's break it down to first principles though. Expansion/contraction means the gas is "contained" by some non-rigid container (even if it's some kind of magnetic field or other containment method). And a gas is (roughly) little particles flying every which way bouncing off the walls pushing on the container. Temperature is (roughly) the internal energy of the system divided by internal entropy (technically T=dE/dS, the relationship between small changes in energy and entropy).

So having a now bigger container means that the new system has more energy, but I haven't changed the entropy... so the temperature is decreased.

On the other hand, if I cool a gas (extract out its energy) it will press against the walls of its container less, and the exterior pressure presses in more, causing the volume to shrink. (similar entropy argument holds, but I ran out of space)

More news stories

Rosetta instrument commissioning continues

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

A sharp eye on Southern binary stars

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Astronaut salary

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Tiny power plants hold promise for nuclear energy

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...

Unraveling the 'black ribbon' around lung cancer

It's not uncommon these days to find a colored ribbon representing a disease. A pink ribbon is well known to signify breast cancer. But what color ribbon does one think of with lung cancer?