Identifying how the chemical subsystems of metabolism have changed

February 25, 2014

To better understand the emergence of life, former SFI Omidyar Fellow Rogier Braakman and External Professor Eric Smith are taking a careful look at Aquifex aeolicus.

Being restricted to extreme, boiling hot spring habitats (a consistent feature of Earth's geology) means the unusual bacterium's metabolic network has evolved less than those of other species. This makes it a great model system to study the early of metabolism, the researchers say.

The pair is using a technique called phylometabolic analysis, which combines the building of gene-based family trees of relatedness (called phylogenies) with reconstruction of chemical metabolic networks. This lets the researchers "see not just what information is changing, but how specific driving forces are changing the underlying chemical networks encoded by those genes," explains Braakman.

Their research, published February 5 in PLOS ONE, highlights three main drivers of evolution: optimizing kinetics, either by replacing generalist enzymes with multiple, specialized enzymes or by fusing successive enzymes in a pathway together to minimize diffusion; and optimizing thermodynamics by choosing pathways that use less energy. These drivers, they say, evoke a major tradeoff in evolution – speed versus efficiency – and suggest that early ancestors probably started with a smaller assortment of enzymes, each of which could weakly catalyze many different reactions.

By identifying how the chemical subsystems of metabolism have changed, researchers might infer phenotypic features of the universal common ancestor, notes Braakman, and even link the competition for resources across different branches of the tree of life to the evolution of the major elemental cycles in the biosphere.

Explore further: Finding the roots and early branches of the tree of life

More information: Braakman R, Smith E (2014) "Metabolic Evolution of a Deep-Branching Hyperthermophilic Chemoautotrophic Bacterium." PLoS ONE 9(2): e87950. DOI: 10.1371/journal.pone.0087950

Related Stories

Finding the roots and early branches of the tree of life

April 19, 2012

A study published in PLoS Computational Biology maps the development of life-sustaining chemistry to the history of early life. Researchers Rogier Braakman and Eric Smith of the Santa Fe Institute traced the six methods of ...

'Promiscuous' enzymes still prevalent in metabolism

August 30, 2012

Open an undergraduate biochemistry textbook and you will learn that enzymes are highly efficient and specific in catalyzing chemical reactions in living organisms, and that they evolved to this state from their "sloppy" and ...

Recommended for you

Ancient walnut forests linked to languages, trade routes

September 4, 2015

If Persian walnut trees could talk, they might tell of the numerous traders who moved along the Silk Roads' thousands of miles over thousands of years, carrying among their valuable merchandise the seeds that would turn into ...

Huddling rats behave as a 'super-organism'

September 3, 2015

Rodents huddle together when it is cold, they separate when it is warm, and at moderate temperatures they cycle between the warm center and the cold edges of the group. In a new study published in PLOS Computational Biology, ...

Fighting explosives pollution with plants

September 3, 2015

Biologists at the University of York have taken an important step in making it possible to clean millions of hectares of land contaminated by explosives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.