Chemical products on a renewable basis

Feb 04, 2014 by Monika Landgraf
At this facility, AVA Biochem produces 5-(hydroxymethyl)furfural from biomass. The compound can serve as a precursor for various materials. Credit: AVA Biochem

A breakthrough in the use of renewable raw materials in chemical production has been achieved by Karlsruhe Institute of Technology (KIT) and its industrial partner AVA Biochem: In January this year, a facility at AVA Biochem in Muttenz (Switzerland) has started production of 5-(hydroxymethyl)furfural. The KIT has developed an innovative hydrothermal method to obtain the organic compound from biomass. Being a platform chemical, 5-HMF can serve as a precursor for various materials.

Today, the chemical industry mainly uses fossil raw materials such as crude oil and natural gas. From these materials, so-called intermediates or platform chemicals serving as precursors for various industrial products such as plastics or substances for coatings, paints, and varnishes are manufactured. However, in view of today's limited resources, the climate change, and our quest for sustainable development, the interest in that can replace crude oil increases. The platform chemical 5-(hydroxymethyl)furfural (5-HMF) plays a key role in the change from a crude-oil-based to biomass-based chemistry.

5-HMF is an organic compound that forms during thermal decomposition of carbohydrates and can thus be detected in many heat-treated foods such as milk, fruit juice, honey or coffee. Heating sugar in a pan, we can, for example, smell the compound as the sugar caramelizes. 5-HMF can be obtained from vegetable biomass and can serve in the future as a precursor for different innovative materials, in particular for polymers with specific properties. According to the U.S. Department of Energy, 5-HMF is one of the ten most important platform chemicals. It is, however, a challenge to manufacture the compound on an industrial scale. Karlsruhe Institute of Technology and the Swiss AVA Biochem BSL AG now achieved a significant scientific-technical breakthrough: In January this year, the facility "Biochem 1" operated by AVA Biochem in Muttenz near Basel started commercial operation for industrial manufacture of 5-HMF. The manufacturing method was developed by researchers from KIT.

Cooperation with AVA Biochem is part of comprehensive KIT activities for manufacture of chemical energy carriers as well as intermediates from biomass with emphasis on so-called hydrothermal methods i.e. reactions in water at increased temperatures. "The hydrothermal methods can be well integrated in different process chains for which biomass is used as raw material," explains Professor Jörg Sauer, head of KIT's Institute of Catalysis Research and Technology (IKFT). "On the one hand, biomass with a high water content which, for example, is a by-product of food production, serves as raw material.. On the other hand, the hydrothermal technology can be combined very well with biotechnological conversion processes.

Within 18 months, the researchers at KIT developed a 5-(hydroxymethyl)furfural laboratory production process that can be implemented in the industry. Hydrothermal carbonization i.e., a method which at high temperatures and increased pressure converts biomass in a closed system in aqueous suspension into biochar, served as a basis. Unlike hydrothermal carbonization, the new process, however, is operated so that the formation of solid materials from biomass is avoided. The fragments from the biomass are converted into chemical components, for example for plastics manufacture.

"Within the short time of only 18 months, our team had to develop a solution to be scaled up from the laboratory to an industrial scale," says Professor Andrea Kruse from KIT. "Thanks to our more than twenty years' experience in hydrothermal processes, we have succeeded in mastering this great challenge." Together with engineers from AVA Biochem, the KIT researchers, parallel to the laboratory experiments, started at an early stage to work on Scale-up to the production scale. Already since 2010, KIT and AVA-CO2, the holding company of AVA Biochem, had researched into hydrothermal carbonization and put it to industrial application. This was also to the benefit of the development of the new method. "The close cooperation between researchers and plant engineers has enabled a rapid industrialization. We are several years ahead of the market," sums up Jan Vyskocil, CEO at AVA Biochem.

In parallel to current production, the teams at KIT and AVA Biochem now optimize the process. Both the spectrum of usable biomasses and the achievable yields have much development potential and open up additional opportunities. A joint patent was taken out on the developed method. There is lively interest now already from different industries. Orders from customers have already been received.

Explore further: First gasoline produced by bioliq pilot plant

add to favorites email to friend print save as pdf

Related Stories

First gasoline produced by bioliq pilot plant

Sep 30, 2013

For the first time, gasoline is produced by Karlsruhe Institute of Technology (KIT). The synthesis stage of the bioliq pilot plant successfully started operation. Hence, KIT, in cooperation with Chemieanlagenbau ...

Plastic that grows on trees, part two

May 19, 2009

Some researchers hope to turn plants into a renewable, nonpolluting replacement for crude oil. To achieve this, scientists have to learn how to convert plant biomass into a building block for plastics and fuels cheaply and ...

Recommended for you

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0