Chemical chaperones have helped proteins do their jobs for billions of years

Feb 20, 2014

An ancient chemical, present for billions of years, appears to have helped proteins function properly since time immemorial.

Proteins are the body's workhorses, and like horses they often work in teams. There exists a modern day team of multiple that help other proteins fold into the complex 3D shapes they must achieve to function. This is necessary to avert many serious diseases caused when proteins misbehave.

But what happened before this team of chaperones was formed? How did the primordial cells that were the ancestors of modern life keep their proteins folded and functional?

Scientists from the University of Michigan discovered that an extremely simple, ancient chemical called can perform the role of a chaperone. It likely played that role billions of years ago, and still keeps its old job today.

"Polyphosphate has likely been present since life began on Earth, and is thought to exist in all living creatures," said postdoctoral researcher Michael Gray. "This means it's extremely important, but no one really knew what it was for.

"We found that bacteria accumulate polyphosphate to defend against disease-causing, unfolding conditions. Purified polyphosphate works well to protect proteins in the test tube, showing that this simple chemical can substitute for the complex team of protein chaperones."

The discovery unravels a long­standing evolutionary mystery that could lead to new strategies for treating protein folding diseases such as Alzheimer's and Parkinson's, which occur when proteins misfold or pile up.

"Once we know how to manipulate the levels of polyphosphate in cells and organisms, we should be able to improve protein folding and develop countermeasures against diseases," said Ursula Jakob, the U-M professor in charge of the research.

Their work appears in the journal Molecular Cell.

Explore further: Protein folding becomes cancer treatment target

add to favorites email to friend print save as pdf

Related Stories

Protein folding becomes cancer treatment target

Dec 03, 2013

(Medical Xpress)—A molecule that helps cancer cells to keep dividing could be a promising target for new treatments, according to research published in the journal Oncogene.

Monster mash: Protein folding gone wrong

Nov 01, 2013

Imagine a 1950s horror movie monster—a creeping, gelatinous, gluey tangle of gunk that strangles everything around it. That's what amyloid plaques are like when they form in body tissues. These gooey protein ...

Aging brains need 'chaperone' proteins

Jan 30, 2014

(Medical Xpress)—The word "chaperone" refers to an adult who keeps teenagers from acting up at a dance or overnight trip. It also describes a type of protein that can guard the brain against its own troublemakers: ...

Recommended for you

How calcium regulates mitochondrial carrier proteins

19 hours ago

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

20 hours ago

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.