CERN prepares its long-term future

Feb 06, 2014

Particle physics takes the long-term view. Originally conceived in the 1980s, the LHC took another 25 years to come into being. This accelerator, which is unlike any other, is just at the start of a programme which is expected to run for another 20 years. Even now, as consolidation work aimed at a restart in 2015 continues, detailed plans are being hatched for a large-scale upgrade to increase luminosity and thereby exploit the LHC to its full potential. The HL (High Luminosity) LHC is CERN's number-one priority and will increase the number of collisions accumulated in the experiments by a factor of ten from 2024 onwards.

Even though the LHC programme is already well defined for the next two decades, the time has come to look even further ahead, so CERN is now initiating an exploratory study for a future long-term project centred on a new-generation circular collider with a circumference of 80 to 100 kilometres. A worthy successor to the LHC, whose collision energies will reach 14 TeV, such an accelerator would allow particle physicists to push back the boundaries of knowledge even further. The Future Circular Collider (FCC) programme will focus especially on studies for a hadron collider, similar to the LHC, capable of reaching unprecedented energies in the region of 100 TeV.

The FCC study will be a global venture for and stems from the recommendation in the European Strategy for Particle Physics, published in May 2013, that a feasibility study be conducted on future fundamental research projects at CERN. It will be conducted over the coming five years and starts with an international kick-off meeting at the University of Geneva from 12 to 15 February.

The FCC will thus run in parallel with another study that has already been under way for a number of years, the Compact Linear Collider, or "CLIC", another option for a future accelerator at CERN. The aim of the CLIC study is to investigate the potential of a linear collider based on a novel accelerating technology.

"We still know very little about the Higgs boson, and our search for dark matter and supersymmetry continues. The forthcoming results from the LHC will be crucial in showing us which research paths to follow in the and what will be the most suitable type of accelerator to answer the new questions that will soon be asked," says Sergio Bertolucci, Director for Research and Computing at CERN.

"We need to sow the seeds of tomorrow's technologies today, so that we are ready to take decisions in a few years' time," adds CERN's Director for Accelerators and Technology, Frédérick Bordry.

The goal of the two studies is to examine the feasibility of the various possible machines, to evaluate their costs and to produce a conceptual design report for the FCC and elaborate on the one already produced for CLIC in time for the next European Strategy update around 2018/2019.

Explore further: OU physicists develop rationale for the next-generation particle collider

add to favorites email to friend print save as pdf

Related Stories

Physics group looks ahead past LHC to LEP3

Aug 08, 2012

(Phys.org) -- A group of physicists is looking beyond the usefulness of the Large Hadron Collider (LHC) to a new collider that would sit in the tunnel still occupied by the LHC, to an updated version of what ...

LHC Ready for Duty Again

Feb 21, 2010

(PhysOrg.com) -- For the Christmas holiday, the Large Hadron Collider at CERN was shut down for a break and for a little technical tinkering. But next week, the hope is that the LHC will start up again around ...

Large Hadron Collider sets world record beam intensity

Apr 22, 2011

(PhysOrg.com) -- Around midnight this night CERN's Large Hadron Collider set a new world record for beam intensity at a hadron collider when it collided beams with a luminosity of 4.67 x 1032cm-2s-1. This exceeds the previous world ...

The Higgs boson: One year on

Jul 05, 2013

A year ago today, physicists from the ATLAS and CMS experiments at CERN proudly announced the discovery of a new boson looking very much like the Higgs boson.

CERN scientists brainstorm future role

Sep 12, 2012

Scientists who searched for the famous Higgs Boson concluded a three-day brainstorming session on Wednesday for mapping a long-term global strategy for particle physics.

Recommended for you

Using antineutrinos to monitor nuclear reactors

13 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Imaging turns a corner

18 hours ago

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Mapping the road to quantum gravity

Apr 23, 2014

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.