Carbon sequestration not so simple in biomass crop production

Feb 21, 2014 by Ann Perry
Soil scientists Brian Wienhold (left) and Gary Varvel compare corncob residue in various stages of decomposition in a no-till field in Lincoln, Nebraska. In this study and several others, ARS researchers were surprised to learn how much carbon corn and switchgrass sequester in the soil between 12 inches and 5 feet deep. Credit: Peggy Greb

Findings at the U.S. Department of Agriculture (USDA) are providing information about the soil carbon dynamics that play a crucial role in lifecycle assessments of bioenergy production. These studies at the Agricultural Research Service (ARS), USDA's chief intramural scientific research agency, support the USDA priority of developing new sources of bioenergy.

Retaining carbon in the soil—called carbon sequestration—significantly affects soil fertility and greenhouse gas emissions, so it has a major impact on the long-term sustainability of bioenergy crop production. In one study, an ARS team conducted a 9-year investigation examining the impact fertilizer and harvest treatments had on sequestration in biomass crops. Scientists contributing to the study included geneticist Ken Vogel, soil scientist Gary Varvel, agronomist Rob Mitchell, and soil scientist Ron Follett.

The team applied nitrogen fertilizer at three different rates to fields of perennial switchgrass and annual no-till maize to see how management practices affected soil . Postharvest stover—corn plant residue left on the field after harvest—was not removed on half of the maize fields. On the other half of the maize fields, only half the stover was removed.

The scientists found that in the maize fields, soil carbon levels increased over time at all depths, with all nitrogen treatments, and with all postharvest stover management. They also determined that more than 50 percent of the soil carbon was found at depths between 1 foot and 5 feet below the soil surface.

More than 50 percent of the soil carbon in the switchgrass fields was also found between 1 and 5 feet below the soil surface. The average annual increase of soil carbon throughout the first 5 feet of subsoil also exceeded 0.9 tons per acre each year, which was equivalent to 3.25 tons of carbon dioxide per acre per year.

The team concluded that calculating rates for bioenergy crops needs to factor in the effects of crop selection, soil differences, environmental conditions, and management practices. Additionally, the deep-rooted nature of these plants requires soil sampling to a depth of 5 feet to account for the increases in soil carbon.

Results from this study were published in Bioenergy Research.

Explore further: How does soil store CO2?

More information: Read more about this research in the February 2014 issue of Agricultural Research magazine.

add to favorites email to friend print save as pdf

Related Stories

Farming commercial miscanthus

Aug 31, 2011

An article in the current issue of Global Change Biology Bioenergy examines the carbon sequestration potential of Miscanthus plantations on commercial farms.

Corn cobs eyed for bioenergy production

Jan 31, 2013

Corn crop residues are often left on harvested fields to protect soil quality, but they could become an important raw material in cellulosic ethanol production. U.S. Department of Agriculture (USDA) research indicates that ...

How does soil store CO2?

Jan 08, 2014

Global CO2 emissions continue to rise—in 2012 alone, 35.7 billion tons of this greenhouse gas entered the atmosphere. Some of it is absorbed by the oceans, plants and soil. They provide a significant reservoir ...

Digging deeper for soil carbon storage

Sep 10, 2013

Many surface soils in Western Australia are already storing as much carbon as they can, according to research at The University of Western Australia and in collaboration with the Department of Agriculture ...

Recommended for you

Deadly human pathogen Cryptococcus fully sequenced

Apr 17, 2014

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...