Broadband THz wave generation with metamaterials demonstrated

Feb 04, 2014 by Breehan Gerleman Lucchesi
Broadband THz wave generation with metamaterials demonstrated
A team led by Ames Laboratory physicists demonstrated broadband, gapless terahertz emission (red line) from split-ring resonator metamaterials (background) in the telecomm wavelength. The THz emission spectra exhibit significant enhancement at magnetic-dipole resonance of the metamaterials emitter (shown in inset image). This approach has potential to generate gapless spectrum covering the entire THz band, which is key to developing practical THz technologies and to exploring fundamental understanding of optics.

Scientists at DOE's Ames Laboratory have demonstrated broadband terahertz (THz) wave generation using metamaterials.

The discovery may help develop and sensing, and make possible THz-speed information communication, processing and storage.

The team created a metamaterial made up of a special type of meta-atom called split-ring resonators.

Split-ring resonators, because of their u-shaped design, display a strong magnetic response to any desired frequency waves in the THz to .

They demonstrated their technique using the wavelength used by telecommunications (1.5 microns), but the THz generation can be tailored simply by tuning the size of the meta-atoms in the metamaterial.

Explore further: Argonne research expanding from injectors to inhalers

add to favorites email to friend print save as pdf

Related Stories

Metamaterial flexible sheets could transform optics

Jun 06, 2013

(Phys.org) —New ultrathin, planar, lightweight, and broadband polarimetric photonic devices and optics could result from recent research by a team of Los Alamos National Laboratory scientists. The advances ...

Recommended for you

Argonne research expanding from injectors to inhalers

7 hours ago

There is a world of difference between tailpipes and windpipes, but researchers at the Department of Energy's Argonne National Laboratory have managed to link the two with groundbreaking research that could ...

Pennies reveal new insights on the nature of randomness

14 hours ago

The concept of randomness appears across scientific disciplines, from materials science to molecular biology. Now, theoretical chemists at Princeton have challenged traditional interpretations of randomness ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.