Brain process takes paper shape

Feb 12, 2014

A paper-based device that mimics the electrochemical signalling in the human brain has been created by a group of researchers from China.

The thin-film transistor (TFT) has been designed to replicate the junction between two neurons, known as a biological synapse, and could become a key component in the development of artificial neural networks, which could be utilised in a range of fields from robotics to computer processing.

The TFT, which has been presented today in the journal Nanotechnology, is the latest device to be fabricated on paper, making the electronics more flexible, cheaper to produce and environmentally friendly.

The artificial synaptic TFT consisted of indium zinc oxide (IZO), as both a channel and a gate electrode, separated by a 550-nanometre-thick film of nanogranular silicon dioxide electrolyte, which was fabricated using a process known as chemical vapour deposition.

The design was specific to that of a biological synapse—a small gap that exists between adjoining neurons over which chemical and electrical signals are passed. It is through these synapses that neurons are able to pass signals and messages around the brain.

All neurons are electrically excitable, and can generate a 'spike' when the neuron's voltage changes by large enough amounts. These spikes cause signals to flow through the neurons which cause the first neuron to release chemicals, known as neurotransmitters, across the synapse, which are then received by the second neuron, passing the signal on.

Similar to these output spikes, the researchers applied a small voltage to the first electrode in their device which caused protons—acting as a neurotransmitter—from the films to migrate towards the IZO channel opposite it.

As protons are positively charged, this caused negatively charged electrons to be attracted towards them in the IZO channel which subsequently allowed a current to flow through the channel, mimicking the passing on of a signal in a normal neuron.

As more and more neurotransmitters are passed across a synapse between two neurons in the brain, the connection between the two becomes stronger and this forms the basis of how we learn and memorise things.

This phenomenon, known as synaptic plasticity, was demonstrated by the researchers in their own device. They found that when two short voltages were applied to the device in a short space of time, the second voltage was able to trigger a larger current in the IZO channel compared to the first applied voltage, as if it had 'remembered' the response from the first voltage.

Corresponding author of the study, Qing Wan, from the School of Electronic Science and Engineering, Nanjing University, said: 'A paper-based synapse could be used to build lightweight and biologically friendly artificial neural networks, and, at the same time, with the advantages of flexibility and biocompatibility, could be used to create the perfect organism–machine interface for many biological applications.'

Explore further: Amplifying communication between neurons

More information: 'Low-voltage protonic/electronic hybrid indium zinc oxide synaptic transistors on paper substrates' Guodong Wu et al 2014 Nanotechnology 25 094001,

Related Stories

Amplifying communication between neurons

Jan 17, 2014

Neurons send signals to each other across small junctions called synapses. Some of these signals involve the flow of potassium, calcium and sodium ions through channel proteins that are embedded within the ...

Loose coupling between calcium channels and sensors

Feb 06, 2014

In research published in this week's online edition of Science, postdoc Nicholas Vyleta and Professor Peter Jonas of the Institute of Science and Technology Austria uncover the existence of loose coupling betwee ...

Synthetic synapse mimics dynamic memory in human brain

Jul 22, 2011

Researchers from UCLA and Japan have designed a synthetic synapse for use in computing equipment that mimics the function of synapses in the human brain. The silver sulfide, nanoscale synapse, or "atomic switch," demonstrates ...

What happens when synapses run out of transmitter?

Oct 09, 2013

(Medical Xpress)—The recent Nobel Prize Award in Medicine highlights the importance of vesicle-based transport for different kinds of cells. One of the recipients, Thomas Sudhof, has contributed extensively to our current understanding of vesicl ...

Recommended for you

First direct observations of excitons in motion achieved

19 hours ago

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 0

More news stories