Bottom-up insight into crowd dynamics

Feb 07, 2014
Bottom-up insight into crowd dynamics

Stampedes unfortunately occur on too regular a basis. Previously, physicists developed numerous models of crowd evacuation dynamics. Their analyses focused on disasters such as the yearly Muslim Hajj or of the Love Parade disaster in Germany in 2010. Unfortunately, the casualties at these events may have been linked to the limitations of the crowd dynamics models used at the time. Now, a new study outlines a procedure for quantitatively comparing different crowd models, which also helps to compare these models with real-world data. In a paper published in European Physical Journal B, Vaisagh Viswanathan, a PhD student from Nanyang Technological University in Singapore, and colleagues have demonstrated that these crowd evacuation dynamics models are a viable decision-making tool in safety preparation and planning concerning real-world human crowds.

The trouble with such models, however, is that they rely on real-world data of crowds that is limited and incomplete. Often only top-down, macroscopic scale measurements of data such as flow, density, and average speed are used. It is not clear whether these metrics can validate the modelled at the individual level.

Instead of using data that is so difficult to source, Viswanthan and colleagues adopted a quantitative study comparing the simulated congestion flow rates, among other things, of three so-called bottom-up models. These focus on the individual behaviour of school children evacuating their classroom during the May 2008 Sichuan Earthquake.

They found that a referred to as the social force model—based on the idea that pedestrians move in response to fictitious attractive or repulsive social forces—best matches the real-world data showing how pupils exit their classrooms.

They also identified a new macroscopic metric, 'the zoned evacuation time', as the one observable parameter that can best discriminate between these models, and also between models and real-world data.

Explore further: Zombies offer key to understanding how crowds evacuate

More information: V. Viswanthan et al. (2014), Quantitative Comparison Between Crowd Models for Evacuation Planning and Evaluation, European Physical Journal B, DOI: 10.1140/epjb/e2014-40699-x

Related Stories

Crowd dynamics in the spotlight after Duisburg disaster

Jul 29, 2010

(PhysOrg.com) -- The Love Parade in Duisburg in western Germany on 24th July was supposed to be a night of music and celebration for the estimated 1.4 million revelers, but it became a catastrophe, with 21 ...

Hunting for gaps

Apr 19, 2011

(PhysOrg.com) -- Researchers have developed a new model for the behavior of pedestrians and crowds. It can help to understand and prevent tragic crowd disasters, to develop better architectural designs and ...

Deciphering the movement of pedestrians in a crowd

Apr 13, 2010

(PhysOrg.com) -- How do pedestrians move in the street? How do they interact? French researchers from the Université Toulouse, in partnership with the Swiss Federal Institute of Technology, Zurich, ...

Recommended for you

Device turns flat surface into spherical antenna

Apr 14, 2014

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...